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Introduction

Experiments and numerical evidences reported in recent literature show that, active matter gives rise to non-equilibrium steady states in presence of boundaries and obstacles. For example, using a model of active
Brownian particles [1], the phenomena of wall accumulation of active particles can be obtained with the combination of Brownian motion and self-propulsion without any explicit alignment interactions [2]. Similarly, a
system of self-propelled and non-interacting particles sediment under an external gravitational field with an activity-dependent sedimentation length [3, 4, 5, 6]. Recently, a minimal active lattice gas model [7], consisting of
self-propelled and hardcore particles, had been introduced in an external gravitational field [8]. By inserting a thin capillary tube into the bulk-sedimented phase of active particles, it was shown that active matter exhibits
capillary action. Contrary to classical passive fluids, an active scalar fluid exhibits wall wetting and capillary action in absence of any attractive forces within the system.

Here, using interacting active Brownian particles (ABP), we study the wall-wetting mechanism of active sedimenting fluid. We consider a minimal model of active particles under gravitational field, inside a two-dimensional
rectangular box. An accumulation of particles near the bottom wall is observed, as well as the wetting of vertical plates by the rise of active particles against the gravity, even without any attractive force within the
system. We characterize this wall-wetting by the meniscus height, calculated from stationary density profile and depending on the inter-particle repulsion. The maximum wetting height depends super-linearly on active
sedimentation length for interacting ABP, and linearly for non-interacting ABP. We also observe two large vortices concentrated close to the meniscus, due to the persistence motion of ABP against the gravity. Moreover,
with non-interacting ABP, a current flow is present near the boundaries for which we propose a coarse-grained description.

Interacting active Brownian particles: the model

▶N circular active Brownian particles in a Lx × Ly box with reflecting boundary conditions, subject to
a gravitational force along −ey. The positions and self-propulsion directions {ri(t), θi(t)} obey:

ṙi = vsei − vgey +
Fi

γ
, θ̇i =

√
2Drη.

▶ Poly-disperse ABP with diameters uniformly distributed in ai ∈ [0.8, 1.2].

▶ The ith particle experiences a force given by Fi =
m∑
j=1

Fij with

Fij =

{
k(ai + aj − rij)r̂ij, ∀ rij < ai + aj
0, otherwise

.

▶ Current density is calculated with:

J(r) =
1

ts

ts∑
t=1

ei(t)δ(r− ri(t))

▶ Curl of the current: A(x, y) = ∂xJy − ∂yJx.

▶ Parameters: swimming Péclet number Pes = vs/aDr, ratio of velocities α = vg/vs and strength of

repulsion between the particles F0 = ka/γvs, where a =
1

N

N∑
i=1

ai.

(a) Steady state density ρs(x, y) measured forN = 5000 active Brownian particles under gravity in a 100×400
box. The global density is ρ0 = 0.125 and the global packing fraction is ⟨ϕ0⟩ ∼ 0.098. (b) Magnitude of
the current density |Js(x, y)|. (c) Current flow and curl amplitude A(x, y) near the left boundary wall.
(d) Average particle orientations ⟨ϕ(x, y)⟩ near the left boundary wall [colormap=density].

Interacting ABP: maximum wetting height

▶ Far from the bottom wall, the density writes ρs(x, y) ∝ exp(−y/λsed) with λsed ∼ Pe2s/Peg.

▶ Strong particle accumulation near the bottom wall (motility induced phase separation).
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(a) Wall and bulk density profiles: ρ(xwall, y) and ρ(xbulk, y) for Pes = 50, α = 0.4, and F0 = 20. The maxi-
mum wetting height ∆hmax is estimated from the difference curve such that |ρ(y, xwall)−ρ(y, xbulk)| > 0.01.
(b) Decay of the rescaled iso-density profile h(x)/Pe4s, fitted by a double-exponential function. (c) Maximum
wetting height ∆hmax ∼ Pe4s/Pe

2.1
g . (d) Maximum wetting height ∆hmax ∼ λ1.8sed.

▶Maximum wetting height behaves like ∆h ∼ λ2sed.

Interacting ABP: vortices

▶ Characterization of the large vortices near the wetting layer on the left and right plates.

▶ Total bulk enstrophy is defined by

ε =

∫
ρ>ρiso

dxdy |A(x, y)|2.

3 4 5 6 7 8 9 10Pe
g

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ε

Pe
s
=35

10 20 30 40 50Pe
s

0

0.5

1

1.5

2

ε

Pe
g
=8

(a) (b)

(a) Enstrophy decreases with Peg for a fixed Pes = 35. (b) Enstrophy increases with Pes for fixed Peg = 8.

Non-interacting active Brownian particles (F0 = 0)

▶ Pointlike active Brownian particles in a Lx × Ly box with reflecting boundary conditions under
gravitational force. The position and self-propulsion direction {r(t), θ(t)} obey:

ṙ = vseθ − vgey +
√

2Dtηr, θ̇ =
√

2Drηθ.

▶ Corresponding Fokker-Planck equation for the probability density function p(r, θ; t):

∂tp = ∇ ·
[
Dt∇p− (vpeθ − vgey)p

]
+Dr∂

2
θp.

▶With density ρ(r) =
∫
dθp(r, θ) and magnetization m(r) =

∫
dθeθp(r, θ), the current density writes

J = −Dt∇ρ− vpm + vgρey.

▶ Curl of the current: A(x, y) = ∂xJy − ∂yJx = −vp[∂xmy − ∂ymx] + vg∂xρ.

▶ Parameters: swimming Péclet number Pes = vs/
√
DtDr, and ratio of velocities α = vg/vs = Peg/Pes.

-10 -5 0 5 10
0

5

10

15

20(a)

10−1

100

101

-10 -5 0 5 10
0

5

10

15

20(b)

−π

−π/2

0

π/2

π

-10 -5 0 5 10
0

5

10

15

20(c)

−3.1

−1.5

0

1.5

3.1

-10 -9 -8 -7 -6 -5
0

1

2

3

4

5(d)

−3.1

−1.5

0

1.5

3.1

(a) Steady state density ρs. (b) Mean orientation given by the magnetization ms. (c) Current flow given by
the orientation of Js and curl amplitude A(x, y). (d) Zoom on the bottom-left corner of (c). Parameters:
Pes = 2 and α = 0.25.

Non-interacting ABP: maximum wetting height

▶ Far from top and bottom walls, the density writes ρs(x, y) = f (x) exp(−y/λsed) with λsed = Pe2s/Peg.
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(a) Wall and bulk density profiles: ρwall = ρ(xwall, y) and ρbulk = ρ(xwall, y) for Pes = 2 and α = 0.25. In
the exponential decay regime, ∆h = 6.1. (b) Maximum wetting height ∆h as a function of λsed = Pe2s/Peg.

▶Maximum wetting height behaves like ∆h ∼ λsed.

Non-interacting ABP: vortices

▶ Vortices formed by the current flows are localized in the four corners, and deformed by the gravity field.
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Current flow given by the orientation of Js and curl amplitude A(x, y). Parameters: Pes = 2 and (a) α = 0,
(b) α = 0.25, (c) α = 0.5, and (d) α = 0.75.

▶ Vortex area decreases with Pes and α, while the maximum curl amplitude increases.
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Vortex area Sbulk (a) and Swall (b) located close to the bottom and left walls, respectively.
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