Polar flocks with discretized directions: the active clock
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Introduction J

Collective motions are widely observed in nature (bird flocks, fish schools, bacteria swarms) and also studied in various artificial systems (liquid droplets, rolling colloids, vibrated polar disks). They consist of a large
number of active particles which consume energy to self-propel and interact via alignment and/or repulsion. For large densities and low noise spontaneous synchronized motion of large clusters of particles, denoted as flocks,
emerges. This flocking transition is an out-of-equilibrium phenomenon, leading to several theoretical models.

The first theoretical model displaying a flocking transition was the Vicsek model (VM) [1, 2]. The active particles perform a ballistic motion with constant velocity and align with the local average particle direction
with the rule 6;(t + dt) = (0(t)), + n&;(t). This alignment is similar to a ferromagnetic interaction where 7 plays the role of the temperature. A collective motion emerges at low temperatures and high densities due to a
spontaneous breaking of the continuous symmetry. A continuum theory proposed by Toner and Tu [3] relates the Vicsek model to the XY model universality class.

Recently, Solon et al. |4] studied a discrete model - called active Ising model (AIM) - on a two-dimensional lattice with active particles hopping with bias to the left or to the right and aligning locally like ferromagnetic
[sing spins. The flocking transition of this model is very similar to the VM and allows various analytical results. We have studied a generalization for the g-state active Potts model (APM) [5, 6] and the ¢-state active clock
model (ACM) [7] in which self-propelled particles have ¢ internal states (directions of motion) and align locally like Potts and clock spins, respectively. In this poster we present the results obtained for the g-state ACM.

The microscopic model J Finite ¢ values: coexistence region and phase diagram J
» NN particles in a off-lattice Ly X Ly rectangular domain. Average density: pg = N/LgzLy,. (a)q=8,p=2,£=09,p,=15 (b)q=8,$=2,£=0.9,p, =2
» ith particle is characterized by its position x; and orientation 8; € {0,27/q,47/q,...,2(q — 1)7/q}. 4 4
» Neighborhood N; = {j with [x; — x;| < 1} of ith particle is constituted of p; particles (no restriction). 3 3
» Local clock Hamiltonian and local magnetization in the neighborhood N;: 9) 9)
J
H; = 3, S: S: cos(0; — 0r), my; = Z (cos 0., sin ;). (1) (1)
LEN; leN; keN;
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» At each time ¢, the ith particle in state ; = 6 can
» hop in preferred direction ¢ = 0 with a rate: D(1 + ¢), 08 |
» hop in another direction ¢ # 0 with a rate: D[1 —e/(q — 1)], '
» flip to an orientation 6’ # 0, for a temperature T = /3 —1 with a rate: 0.6 | e
8J . microphase
Wiip (0 — 0") = v exp(—BAH;) = v exp {— ‘m; - (ey —eg) +1— cos( — 0)] } . 04 |
[
» Rescaled quantities (for an infinite ¢ limit well-defined): 02 |
D =qD and € = - .
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L q = 4-state active clock model J x 0o
(@) q=4,p=2,8=02,p,y= 1.5 b) q=4,B=2,=08,p, =15 » Liquid-gas phase transition, with microphase separation in the coexistence region (like VM).
4 4 » Absence of the reorientation transition.
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, ) Number and magnetization fluctuations in liquid phase J
1 1 @& ® s
0 0 g |95 T oS A T
e =6 =16 —— 10 107 gizégg e L&"""
©) kal ARY | . [L=400 §.o
q=-4,:=05 10 107 pL=50 o &
0.7 o s
5 510

0.6 |

T
R | 0 T
~ ' longitudinal i 102 L
a2 | L 10° 10> 10" 10° 10°
' [g) liq <n> <n>
03 i Nl > An? ~ (n)¢ and Am? ~ (n)$, with &:
0 1 2 3 4 5 6 gl 4 | 5| 6 | 7 | 8 |16 | o
0o £11.04/1.081.36/1.561.62 1.62|1.65
» Liquid-gas phase transition, with macrophase separation in the coexistence region (like AIM and APM). - m.acrophase Separat.ion.in coex‘istence region =¢=1 gormal ﬂuctgations (g < 9);
» Presence of the reorientation transition (like APM), from transverse band (low bias €) to longitudinal > microphase s.eparaﬁlon In coexistence region =- & > 1, giant ﬂuctuamons (g = 6).
lane (high bias €). This transition is due to the heterogeneous diffusion in longitudinal [DH = D(1+¢€)] > No asymptotic regime at large (n) observed for our system sizes (Ly = Ly < 800).
and transverse [D | = D(1 —€)] directions, leading to D} < D) when &€ — 1. ] ——
Hydrodynamic description J
L active XY model (q = OO) ‘J » Hydrodynamic equations for the density p(x;t) and the magnetization m(x;t):
v
(a) AXY, B=2,8=0.9,p)=15 Oip = DoV2p+ V- (V- Q) — vV - m,
4 4 B 9
U (Opy — O 20 v r m
3 3 Oym = DgV2m + — 7 TV W lm—=(Vp+V-Q)+ J—1-— — k— | m.
X . t 0 3 ( any Oy + ayy 9 ( P Q) 70 5 /02_5 [)2
1 1 » Diffusion constant Dy = D /4, self-propulsion velocity v = DEg, ferromagnetic interaction strength
0 0 o = qv/(q—1), & = (8J)%(7 — 38J)/8, and nematic tensor
_ pJ m2 — mz 2mgmy
20p \ 2mgmy, —m3+ mz '
» [mpossible to conclude about macrophase/microphase separation in the coexistence region with
= 0.6 transverse vectorial PDEs [2]. We need to introduce a noise term (future work).
'\&/ o microphase
= 0.4 | . - Open questions - Perspectives J
0.2 Dliq _ » Do the number fluctuations in the liquid phase have an impact on the coexistence region?
0 | v » Are the pinned/unpinned orientations in liquid phase equivalent to macrophase/microphase separation
0 1 ) 3 4 in coexistence region’
0o 0o » Are the pinned/unpinned orientations equivalent to normal/giant number fluctuations in liquid phase?
» Liquid-gas phase transition, with microphase separation in the coexistence region (like VM). = Mgy dlﬂ‘"erences obse.rved .Corr.lpared o e il mad e oy Sglon & @l [8]’ iorr & shighttlly e
, , . model (different hopping/flipping rates). From where these differences arise?
» Absence of the reorientation transition (only transverse bands are observed). , L , , o
» Work on the hydrodynamic description to validate the simulation’s results.
g-dependence on the ordered phase without activity (¢ = 0) J Reforences J
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» For ¢ < 5: “pinned” orientations (LRO), and for ¢ > 6: “unpinned” orientations (QLRO).
» The transition QLRO/LRO may depend on the temperature, the density and the system size.
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