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Introduction

I The dispersion in periodic channels was studied in two
different regimes: for slowly varying channels where a
dimensional reduction could be implemented and for
highly corrugated channels where the first passage time
between two narrow necks govern the dispersion.

I We use a general shape of symmetric channel, carac-
terised by the radius as R(z) = a + Hg(z/L), where
g(z/L) ∈ [0, 1].

I Two parameters appears: ξ ≡ H/a and ε ≡ a/L.
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Figure 1 : Schematic of a channel.

I The long time effective diffusion coefficient De ≡ lim
t→∞[z(t)− z(0)]2/(2t) could be expressed as [1]

De = D0

[
1 +

(d − 1)〈R ′ Rd−2 fS〉
〈Rd−1〉

]
where 〈w〉 =

∫ L
0 dzw(z)/L and fS(z) ≡ f (r = R(z), z). The function f (r , z) satisfies the set of equations

∂2
z f + r2−d∂r [rd−2∂r f ] = 0

[R ′(z)∂z f − ∂r f ]r=R(z) = R ′(z) ; f (r , z + L) = f (r , z) ; ∂r f |r=0 = 0

Slowly varying channels (ε→ 0)

I Taking R(z) = εR̃(z), a standard perturbation in ε2 brings the effective diffusivity. The existing develop-
ments was computed using a dimensional reduction carrying an effective one-dimensional diffusivity relied
by the Lifson and Jackson formula [2] to the effective diffusivity De.

I Fick-Jacobs [3]

DFJ =
D0

〈R̃d−1〉〈R̃1−d〉
I Zwanzig [4]

DZw =
D0

〈R̃〉
[
〈R̃−1〉 + γε2〈R̃ ′2/R̃〉

]

I Reguera-Rubi [5]

DRR =
D0〈

R̃
〉〈

R̃−1(1 + ε2R̃ ′2)γ
〉

I Kalinay-Percus [6]

DKP =
D0〈

R̃
〉〈

εR̃ ′
R̃ arctan(εR̃ ′)

〉
I These results are only correct at the order ε2. A more general expansion was given by [6, 7] as

De = DFJ

[
1 + C2ε

2 + C4ε
4 + C6ε

6 +O(ε8)
]
,

where C2, C4 and C6 are functions of R̃ and its derivatives depending on the dimension. The function
f (r , z) behaves as

f (r , z) =
ε→0

f (z).

Wide channels (ε→∞)

I In the limit of large ε, the previous results are not correct and a one-dimensional reduction is not possible.
Here, the effective diffusivity can be seen as the rate of time spent in the region r < a, which yields with
ergodicity to

De

D0
=

ε→∞
V (r < a)

V
=

ad−1

〈Rd−1〉.

I Solving the equations at the leading order of the ε−1 expansion gives

f (r , z) =
ε→∞ z θ(r − a)L + b(r),

which implies the presence of a boundary layer at r = a. We define the boundary layer coordinate η as
r = a+ηL and the function f (η, z) satisfies the Laplace equation and after some conformal transformations
we get

f (η, z) = Re

[
iL

π
ln
(

1 +
√

1 + e−2πiz/L+2πη
)]

+ b(a).

I The ε−1 contribution of the effective diffusivity given by the boundary layer term do not depend on the
channel geometry,

De = D0
ad−1

〈Rd−1〉

[
1 +

(d − 1) ln 2

πε
+O(ε−2)

]
.

Padé type approximant and numerical results

I We develop a Padé type approximant statisfying both limits ε→ 0 and ε→∞ such that

De = DFJ
1 + a1ε + a2ε

2 + a3ε
3

1 + b1ε + b2ε2 + b3ε3
.

I The numerical results for the bidimensional channel of radius R(z) = ε{0.5 + 0.266[cos(2πz) + sin(6πz)]}
shows a good approximation of the effective diffusivity by the Padé development.
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Figure 2 : The exact solution f (r , z) for (a) ε = 0.01 (FJ) , (b) ε = 0.5 et (c) ε = 100 (WC).
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Figure 3 : Padé development versus exact solution given by a PDE solver. (a) The domain of slowly varying
channels with the successive terms of the perturbative expansion in ε2. (b) Comparison with the existing
developments [4, 5, 6] with finite values of ε.

Intermediate regime of dispersion

I The Padé development is not correct in an intermediate range of ε, which grows in the large ξ limit. A
small pore openings perturbation [8, 9] can solve this case. The effective diffusivity reads as

De '
L2D0

V
×
{

π
2 ln(2κ/ε)

(d = 2)

2a (d = 3)

where κ is a constant depending on the ratio H/L and the shape of the channel as

lnκ =
π

2
[R(r0, r0) + R(r1, r1)− 2G (r0, r1)],

where G is the pseudo-Green’s function of the domain without opening, R is the non-diverging part of this
Green’s function and r0, r1 are the positions of the openings. In the limit H � L, κ = 2/π.
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Figure 4 : Effective diffusivity De for channel of ellipsoidal shape g(u) =
√

1− 4u2 with (a) H = 0.1L and
(b) H = 100L in presence of small openings.

I Comparing with [9] : De = L2/(2T ) where T is the time to reach a pore, starting from the opposite
opening considered as reflecting.

Highly corrugated channels and validity diagrams

I The range of the intermediate regime depends on the geometry close to the minimum radius of the channel,
chosen to be at z = 0, such that

R(z → 0) ' a(1 + Aξ|z |ν).

I For ν < νc ≡ 1
d−1, DFJ is finite and independant of ε and ξ,

DFJ =
D0

〈gd−1〉〈g1−d〉.

The dispersion through small openings is controlled by the narrow escape time (NET).

I For ν > νc , 〈g1−d〉 diverges and DFJ vanishes with increasing ξ as

DFJ =
L2

2T
∼ D0ξ

1/ν−d+1.

The dispersion through small openings is controlled by events of narrow escape through a funnel (NEF).

I A diagram (ε, ξ) summarizing the asymptotic estimates of De is given for both smooth (ν > νc) and highly
corrugated (ν < νc) channels.
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Figure 5 : The validity diagrams of De expressions for (a) ν > νc and (b) ν ≤ νc .
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Figure 6 : Effective diffusivity De for channels of sinusoidal shape g(u) = [1 + cos(2πu)]/2 (ν = 2) in 2D

(a) and 3D (b), and ellipsoidal shape g(u) =
√

1− 4u2 (ν = 0.5) in 2D (c) and 3D (d). Disks represent
the numerical solution, continuous lines correspond to the Padé approximant and dashed lines represent
the various asymptotic regimes: FJ, NET and WC with increasing ε.

I We identify all mechanisms which control the dispersion in a symmetric channel and the domain of validity
of the asymptotic expressions of the long time effective diffusivity in terms of (ε , ξ) parameters.
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