Geometry controlled dispersion in
periodic corrugated channels
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» The dispersion in periodic channels was studied in two » The Padé development is not correct in an intermediate range of €, which grows in the large & limit. A
different regimes: for slowly varying channels where a small pore openings perturbation [8, 9] can solve this case. The effective diffusivity reads as
dimensional reduction could be implemented and for 7 T _
D, ~ L*Dy < {2|n(2/<c/6) (d=2)
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highly corrugated channels where the first passage time
V 2a (d =3)

between two narrow necks govern the dispersion.
where x is a constant depending on the ratio H/L and the shape of the channel as

Inx = g[R(ro, ro) + R(r1,r1) —2G(rp, r1)],

» We use a general shape of symmetric channel, carac-
terised by the radius as R(z) = a + Hg(z/L), where
g(z/L) €[0,1].

where G is the pseudo-Green's function of the domain without opening, R is the non-diverging part of this

Figure 1 : Schematic of a channel. Green's function and rg, ry are the positions of the openings. In the limit H > L, k = 2/m.
» Two parameters appears: £ = H/aand e = a/L. (a) 2.2 | | | | . (b)
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» The long time effective diffusion coefficient De = t|_|>rgo[z( ) — 2z(0)]2/(2t) could be expressed as [1] o 200!
i ) pd—2 |
De =Dy |1+ (d —1)(R'R fs) Slx 1.6 PSS
; <Rd_1> i 14 400}
where ( fO dzw(z)/L and fg(z) = f(r = R(z), z). The function f(r, z) satisfies the set of equations 1.9/ 200
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Figure 4 . Effective diffusivity De for channel of ellipsoidal shape g(u = /1 — 4u? with (a) H=10.1L and

(b) H = 100L in presence of small openings.

» Comparing with [9] : De = L?/(2T) where T is the time to reach a pore, starting from the opposite
opening considered as reflecting.

» Taking R(z) = ER . a standard perturbation in 2 brings the effective diffusivity. The existing develop-
ments was computed using a dimensional reduction carrying an effective one-dimensional diffusivity relied

by the Lifson and Jackson formula [2] to the effective diffusivity De.

» Fick-Jacobs [3] > Reguera-Rubi [5]
Dy D Dy » The range of the intermediate regime depends on the geometry close to the minimum radius of the channel,
Dpy=— = N ~ chosen to be at z = 0, such that
d—1 1—-d R> <R—1 1 2 RI2 7> ,
| (RITHRT) ( (1+7R%) R(z — 0) ~ a1+ A¢|z]").
> Zwanzig [4] » Kalinay-Percus [6] » Forv <v.= ﬁ Drj is finite and independant of € and &,
Dy
DZW - . ~ ~ ~ DKP = Do Dy — Dy
(R) [(R1) +22(R2/R)] VAR F) = TdoTy g Tdy
<R> R arctan(eR’) g ") g™
5 . _ The dispersion through small openings is controlled by the narrow escape time (NET).
» These results are only correct at the order £<. A more general expansion was given by [6, 7] as
De = Dy [1 e C252 T C454 T C656 T (9(58)} , » Forv > vg, (gl_d> diverges and Dpj vanishes with increasing £ as
~ 2
where (y, (4 and (g are functions of R and its derivatives depending on the dimension. The function Dpj = L_ ~ Dogl/V_dH,
f(r,z) behaves as | | o 2T
f(r,z) = f(2). The dispersion through small openings is controlled by events of narrow escape through a funnel (NEF).

» A diagram (g, £) summarizing the asymptotic estimates of D is given for both smooth (v > 1) and highly
L Wide channels (£=500) T comgoted (1< ) chamels

. . . . .. . (a) - (b)
» In the limit of large €, the previous results are not correct and a one-dimensional reduction is not possible. 5 :
Here, the effective diffusivity can be seen as the rate of time spent in the region r < a, which yields with T I
Tel e : S w.
ergodicity to N =, |
De  V(r<a) ad—1 § \\x § Ny
Do coo0  V (RI-1y [ FJ | o [ , |
. . . _q L nd NEF i
» Solving the equations at the leading order of the £~ * expansion gives 100! .
f(r,z) = z0(r—a)l+b(r), D.= Dy (D.=Dy)
which implies the presence of a boundary layer at r = a. We define the boundary layer coordinate 7 as ) 1OO/L ) /1LOO
. . e . . = a =a
r = a+nL and the function f (7, z) satisfies the Laplace equation and after some conformal transformations | e - .
we get Figure 5 : The validity diagrams of D, expressions for (a) v > v¢ and (b) v < v.
f(n.2) = Re | "“In (14 V14 e 2mi/L2m) | 4 b(a), (@) 10 . (b) gy
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» The e~ ! contribution of the effective diffusivity given by the boundary layer term do not depend on the ] 192
channel geometry, S | S e
d—1 ~ ~—
a (d — 1) |n 2 ) o R RS
De =D 1+ + O(e : Q- | R
e = Do, [ — (e77) 10 10
» We develop a Padé type approximant statisfying both limits € — 0 and € — o0 such that (d) 100___
1+ aje + 3252 + 3353
De = Drj ) 3 ¢ _107%
1 + bje + bye* + bse Q
~—
» The numerical results for the bidimensional channel of radius R(z) = €{0.5+ 0.266[cos(27z) + sin(67z)]} : N =] 104 3
shows a good approximation of the effective diffusivity by the Padé development. ‘
. . . 10755 . *
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0.08 0.3 = .
o 1} ' Moo Figure 6 : Effective diffusivity De for channels of sinusoidal shape g(u) = [1 + cos(27u)]/2 (v = 2) in 2D
lo.00 0.1 (a) and 3D (b), and ellipsoidal shape g(u) = v/1 — 4u? (v = 0.5) in 2D (c) and 3D (d). Disks represent
oo =0 Lo the numerical solution, continuous lines correspond to the Padé approximant and dashed lines represent
s :8; the various asymptotic regimes: FJ, NET and WC with increasing ¢.
012 d * 0.3
rw\' —0.16 ' € / _8‘;1 » We identify all mechanisms which control the dispersion in a symmetric channel and the domain of validity
04 02 00 02 04 —04 =02 00 02 04 04 02 00 o0z 04 of the asymptotic expressions of the long time effective diffusivity in terms of (¢, ) parameters.

Figure 2 : The exact solution f(r, z) for (a) ¢ = 0.01 (FJ), (b) £ = 0.5 et (c) € = 100 (WC).
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