

Geometry controlled dispersion in periodic corrugated channels

Matthieu Mangeat, Thomas Guérin and David S. Dean

université de BORDEAUX

Introduction

- ► The dispersion in periodic channels was studied in two different regimes: for slowly varying channels where a dimensional reduction could be implemented and for highly corrugated channels where the first passage time between two narrow necks govern the dispersion.
- ▶ We use a general shape of symmetric channel, caracterised by the radius as R(z) = a + Hg(z/L), where $g(z/L) \in [0,1].$

Figure 1: Schematic of a channel.

▶ The long time effective diffusion coefficient $D_e \equiv \lim_{t \to \infty} \overline{[z(t) - z(0)]^2/(2t)}$ could be expressed as [1]

$$D_e = D_0 \left[1 + rac{(d-1)\langle R' \ R^{d-2} \ f_S
angle}{\langle R^{d-1}
angle}
ight]$$

where $\langle w \rangle = \int_0^L dz w(z)/L$ and $f_S(z) \equiv f(r=R(z),z)$. The function f(r,z) satisfies the set of equations $\partial_r^2 f + r^{2-d} \partial_r [r^{d-2} \partial_r f] = 0$

$$[R'(z)\partial_z f - \partial_r f]_{r=R(z)} = R'(z) \; ; \; f(r,z+L) = f(r,z) \; ; \; \partial_r f|_{r=0} = 0$$

Slowly varying channels ($\varepsilon \to 0$)

- ▶ Taking $R(z) = \varepsilon \tilde{R}(z)$, a standard perturbation in ε^2 brings the effective diffusivity. The existing developments was computed using a dimensional reduction carrying an effective one-dimensional diffusivity relied by the Lifson and Jackson formula [2] to the effective diffusivity D_e .
 - ► Fick-Jacobs [3]
 - ➤ Zwanzig [4]
 - $D_{
 m Zw} = rac{D_0}{\left< ilde{R}
 ight>\left\lceil \left< ilde{R}^{-1}
 ight> + \gammaarepsilon^2 \left< ilde{R}'^2/ ilde{R}
 ight>
 ight]} \qquad D_{
 m KP} = rac{D_0}{\left< ilde{R}
 ight>\left<rac{arepsilon ilde{R}'}{ ilde{R} rctan(arepsilon ilde{R}')}
 ight>}$
- ► Reguera-Rubi [5]

$$D_{\mathrm{FJ}} = rac{D_0}{\left\langle ilde{R}^{d-1}
ight
angle \left\langle ilde{R}^{1-d}
ight
angle} \qquad D_{\mathrm{RR}} = rac{D_0}{\left\langle ilde{R}
ight
angle \left\langle ilde{R}^{-1} (1 + arepsilon^2 ilde{R}'^2)^{\gamma}
ight
angle}$$

► Kalinay-Percus [6]

$$D_{ ext{KP}} = rac{D_0}{\left\langle ilde{R}
ight
angle \left\langle rac{arepsilon ilde{R}'}{ ilde{R} \operatorname{arctan}(arepsilon ilde{R}')}
ight
angle}$$

▶ These results are only correct at the order ε^2 . A more general expansion was given by [6, 7] as

$$D_e = D_{\mathrm{FJ}} \left[1 + C_2 \varepsilon^2 + C_4 \varepsilon^4 + C_6 \varepsilon^6 + \mathcal{O}(\varepsilon^8) \right],$$

where C_2 , C_4 and C_6 are functions of \tilde{R} and its derivatives depending on the dimension. The function f(r,z) behaves as

$$f(r,z) \underset{\varepsilon \to 0}{=} f(z).$$

Wide channels $(\varepsilon \to \infty)$

▶ In the limit of large ε , the previous results are not correct and a one-dimensional reduction is not possible. Here, the effective diffusivity can be seen as the rate of time spent in the region r < a, which yields with ergodicity to

$$\frac{D_e}{D_0} \stackrel{=}{\varepsilon \to \infty} \frac{V(r < a)}{V} = \frac{a^{d-1}}{\langle R^{d-1} \rangle}.$$

Solving the equations at the leading order of the ε^{-1} expansion gives

$$f(r,z) = z \theta(r-a)L + b(r),$$

which implies the presence of a boundary layer at r=a. We define the boundary layer coordinate η as $r=a+\eta L$ and the function $f(\eta,z)$ satisfies the Laplace equation and after some conformal transformations we get

$$f(\eta,z) = \operatorname{Re}\left[rac{iL}{\pi}\ln\left(1+\sqrt{1+e^{-2\pi iz/L+2\pi\eta}}
ight)
ight] + b(a).$$

▶ The ε^{-1} contribution of the effective diffusivity given by the boundary layer term do not depend on the channel geometry,

$$D_e = D_0 rac{a^{d-1}}{\langle R^{d-1}
angle} \left[1 + rac{(d-1) \ln 2}{\pi arepsilon} + \mathcal{O}(arepsilon^{-2})
ight].$$

Padé type approximant and numerical results

ightharpoonup We develop a Padé type approximant statisfying both limits $\varepsilon o 0$ and $\varepsilon o \infty$ such that

$$D_e = D_{\mathrm{FJ}} \frac{1 + a_1 \varepsilon + a_2 \varepsilon^2 + a_3 \varepsilon^3}{1 + b_1 \varepsilon + b_2 \varepsilon^2 + b_3 \varepsilon^3}.$$

▶ The numerical results for the bidimensional channel of radius $R(z) = \varepsilon \{0.5 + 0.266[\cos(2\pi z) + \sin(6\pi z)]\}$ shows a good approximation of the effective diffusivity by the Padé development.

Figure 2 : The exact solution f(r,z) for (a) $\varepsilon=0.01$ (FJ) , (b) $\varepsilon=0.5$ et (c) $\varepsilon=100$ (WC).

Figure 3 : Padé development versus exact solution given by a PDE solver. (a) The domain of slowly varying channels with the successive terms of the perturbative expansion in ε^2 . (b) Comparison with the existing developments [4, 5, 6] with finite values of ε .

Intermediate regime of dispersion

▶ The Padé development is not correct in an intermediate range of ε , which grows in the large ξ limit. A small pore openings perturbation [8, 9] can solve this case. The effective diffusivity reads as

$$D_e \simeq rac{L^2 D_0}{V} imes egin{cases} rac{\pi}{2 \ln(2\kappa/arepsilon)} & (d=2) \ 2a & (d=3) \end{cases}$$

where κ is a constant depending on the ratio H/L and the shape of the channel as

$$\ln \kappa = \frac{\pi}{2} [R(\mathbf{r}_0, \mathbf{r}_0) + R(\mathbf{r}_1, \mathbf{r}_1) - 2G(\mathbf{r}_0, \mathbf{r}_1)],$$

where G is the pseudo-Green's function of the domain without opening, R is the non-diverging part of this Green's function and $\mathbf{r}_0, \mathbf{r}_1$ are the positions of the openings. In the limit $H \gg L$, $\kappa = 2/\pi$.

Figure 4: Effective diffusivity D_e for channel of ellipsoidal shape $g(u) = \sqrt{1 - 4u^2}$ with (a) H = 0.1L and (b) H = 100L in presence of small openings.

ightharpoonup Comparing with [9] : $D_e = L^2/(2T)$ where T is the time to reach a pore, starting from the opposite opening considered as reflecting.

Highly corrugated channels and validity diagrams

▶ The range of the intermediate regime depends on the geometry close to the minimum radius of the channel, chosen to be at z = 0, such that

$$R(z o 0)\simeq a(1+A\xi|z|^{
u}).$$

▶ For $\nu < \nu_c \equiv \frac{1}{d-1}$, $D_{\rm FJ}$ is finite and independent of ε and ξ ,

$$D_{\mathrm{FJ}} = rac{D_0}{\langle g^{d-1}
angle \langle g^{1-d}
angle}.$$

The dispersion through small openings is controlled by the narrow escape time (NET).

▶ For $\nu > \nu_c$, $\langle g^{1-d} \rangle$ diverges and $D_{\rm F,J}$ vanishes with increasing ξ as

$$D_{\rm FJ} = rac{L^2}{2T} \sim D_0 \xi^{1/
u - d + 1}.$$

The dispersion through small openings is controlled by events of narrow escape through a funnel (NEF).

ightharpoonup A diagram (ε, ξ) summarizing the asymptotic estimates of D_e is given for both smooth $(\nu > \nu_c)$ and highly corrugated ($\nu < \nu_c$) channels.

Figure 5 : The validity diagrams of D_e expressions for (a) $\nu > \nu_c$ and (b) $\nu \leq \nu_c$.

Figure 6: Effective diffusivity D_e for channels of sinusoidal shape $g(u) = [1 + \cos(2\pi u)]/2$ ($\nu = 2$) in 2D (a) and 3D (b), and ellipsoidal shape $g(u) = \sqrt{1-4u^2}$ ($\nu=0.5$) in 2D (c) and 3D (d). Disks represent the numerical solution, continuous lines correspond to the Padé approximant and dashed lines represent the various asymptotic regimes: FJ, NET and WC with increasing ε .

▶ We identify all mechanisms which control the dispersion in a symmetric channel and the domain of validity of the asymptotic expressions of the long time effective diffusivity in terms of (ε, ξ) parameters.

Références

- T. Guérin and D. S. Dean, Phys. Rev. E **92**, 062103 (2015).
- S. Lifson and J. L. Jackson, J. Chem. Phys. 36, 2410 (1962).
- M. Jacobs, Diffusion processes (Springer, New-York) 1967.
- R. Zwanzig, J. Phys. Chem. **96**, 3926 (1991).
- D. Reguera and J. M. Rubi, Phys. Rev. E **64**, 061106 (2001). P. Kalinay and J. K. Percus, Phys. Rev. E 74, 041203 (2006).
- K. D. Dorfman and E. Yariv, J. Chem. Phys. 141,044118 (2014).
- M. J. Ward and J. B. Keller, SIAM J. Appl Math 53, 770 (1993).
- S. Pillay, M. J. Ward, A. Peirce and T. Kolokolnikov, Multiscale Modeling & Simulation 8, 803 (2010).
- [10] M. Mangeat, T. Guérin and D. S. Dean, EPL (2017, accepted).