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Introduction

Complex systems are typically heterogeneous as individuals vary in their properties, their response to the external environment, and to each other. In particular, many biological systems that show flocking involve
self-propelled particles with heterogeneous interactions, which motivates the study of populations with multiple species. In this work, we consider the two-species variant of the Vicsek model [1] (TSVM) and the active
Ising model [2] (TSAIM), consisting of two kinds of self-propelled particles that tend to align with particles from the same species and to antialign with the other. These two-species models show a flocking transition that
is reminiscent of the original one-species model, as a liquid-gas phase transition, and display phase-separation in the coexistence region where dense liquid bands of each species propagate in a gaseous background. The
interesting feature of these models is the appearance of two dynamical states in the coexistence region: the PF (parallel flocking) state in which all bands of the two species propagate in the same direction, and the APF
(antiparallel flocking) state in which the bands of two different species move in opposite directions. PF and APF states perform stochastic transitions from one to the other only in TSVM, and the APF liquid phase of the
TSVM is replaced by a high-density PF state in the TSAIM. We also study the impact of particle switching from one species to another.

Two-species Vicsek model (TSVM)

▶N particles in a Lx × Ly periodic domain. Average density: ρ0 = N/LxLy.

▶ Each particle carries a position rti = (xti, y
t
i), a spin-orientation σt

i = (cos θti, sin θ
t
i) and a species-spin

sti = ±1 (sti = +1 for an A particle and sti = −1 for a B particle). We focus here on NA = NB = N/2.

▶ Time-evolution: θt+1i = ⟨θti⟩ + ηξti and rt+1i = rti + v0σ
t+1
i , with ⟨σt

i⟩ =
∑
j∈Ni

stis
t
jσ

t
j, and ξti scalar

noise distributed uniformly in [−π, π]. v0 = 0.5 if not specified.

▶ Order parameters: vs(t) =
1

N

N∑
i=1

σt
i = v+(t) + v−(t) and va(t) =

1

N

N∑
i=1

stiσ
t
i = v+(t)− v−(t).

TSVM: different states

▶ Two different states are observed: anti-parallel flocking (APF) and parallel flocking (PF) states.
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Fig. 1.1: (a) APF and (b) PF states in coexistence region. (c) APF liquid state.

TSVM: order parameters and states

▶ APF state means va > vs and PF state means vs > va (with vs = |vs|, and va = |va|).
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Fig. 1.2: Probability distribution P (vs, va). Two peaks indicate switching between the APF and PF states.
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Fig. 1.3: Order parameters V± = ⟨|v±|⟩, Vs,a = ⟨vs,a⟩ in the restricted APF and PF ensembles (ρ0 = 0.5).

TSVM: phase diagrams

▶ Similarly to VM [1], the flocking transition is a liquid-gas phase transition.
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Fig. 1.4: (a) Noise-density phase diagram. (b) Velocity-density phase diagram.

TSVM: APF/PF transitions

▶ In the APF+PF region, the system switches stochastically between the APF and PF states.
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Fig. 1.5: Comparison of the time series of vs−va at two system sizes (a,b), and at two noise strengths (c,d).
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Fig. 1.6: (a) Average frequency f of APF/PF transitions. (b) Average time τPF spent in the PF state.

Two-species active Ising model (TSAIM)

▶N particles on a Lx × Ly periodic lattice. Average density: ρ0 = N/LxLy.

▶ jth particle on site i carries a spin-orientation σ
j
i = ±1 and a species-spin s

j
i = ±1 (s

j
i = +1 for an A

particle and s
j
i = −1 for a B particle). We focus here on NA = NB = N/2.

▶ Order parameters on site i: vs,i =
ρi∑
j=1

σ
j
i and va,i =

ρi∑
j=1

s
j
iσ

j
i , with ρi the number of particles on site i.

▶ Local Hamiltonian on site i: Hi = − J

2ρi

∑
j ̸=k

(s
j
iσ

j
i )(s

k
i σ

k
i ) = − J

2ρi
v2a,i +

J

2
.

▶ Flipping rate: Wflip(σ → −σ) ∝ exp(−β∆Hi) = exp

(
−2βJ

ρi
sσva,i

)
.

▶ Hopping rate in direction p: Whop(p, σ) = D(1 + εσp · ex).

TSAIM: different states

▶ APF and PF states are observed in the coexistence and liquid regions.

0 256 512 768 1024
0

64

128
β = 0.75, ε = 0.9, ρ0 = 5

(a)

6

0

6

0 256 512 768 1024
0

64

128
β = 0.75, ε = 0.9, ρ0 = 5

(b)

6

0

6

0 256 512 768 1024
0

64

128
β = 0.75, ε = 0.9, ρ0 = 10

(c)

6

0

6

0 256 512 768 1024
0

64

128
β = 0.75, ε = 0.9, ρ0 = 10

(d)

6

0

6

Fig. 2.1: (a) APF and (b) PF states in coexistence region. (c) APF liquid state. (d) PF high-density state.

TSAIM: ε = 0 phase transition

▶ Va = ⟨va⟩ plays the role of order parameter when ε = 0, leading to a second order phase transition.
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Fig. 2.2: (a) Order parameter Va and (b) Binder cumulant U4 = 1 − ⟨v4a⟩/3⟨v2a⟩2 vs ρ0, for β = 0.75.
(c) Temperature-density phase diagram.

TSAIM: density profiles and phase diagrams

▶ Similarly to AIM [2], the flocking transition is a liquid-gas phase transition.
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Fig. 2.3: (a) Density profiles for increasing density, β = 0.75, ε = 0.9. (b) Temperature-density phase
diagram. (c) Velocity-density phase diagram.

TSAIM: hydrodynamic description

▶ Hydrodynamic equations for ρ = ρA + ρB, m = ρA − ρB, vs = mA +mB, va = mA −mB:

∂tρ = D∇2ρ− v∂xvs, ∂tm = D∇2m− v∂xva,

∂tvs = D∇2vs − v∂xρ− 2

(
1 +

r′

ρ
+ 3κ

v2a
ρ2

)
vs + 4βJ

(
1 +

r′

ρ
+ κ

v2a
ρ2

)
mva
ρ

,

∂tva = D∇2va − v∂xm + 2

(
2βJ − 1− r

ρ
− α

v2a
ρ2

)
va,

with v = 2Dε, κ = 2(βJ)2/3, α = 2(βJ)2(1− 2βJ/3), and r = (3− 2βJ)r′.
▶ They reproduce correctly the behavior of microscopic simulations.
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Fig. 2.4: (a) APF and (b) PF states, for β = 0.75, ε = 0.9, ρ0 = 2.05. (c) Density profiles for increasing
density, β = 0.75, ε = 0.9. (d) Temperature-density phase diagram. (e) Velocity-density phase diagram.
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