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Introduction on collective motions

Natural and artificial collective motions

Fish schools

Becco et al., Physica

A (2006)

Bird flocks

Ballerini et al., PNAS (2008)

bacteria swarm, human crowds, ...

Rolling colloids

Bricard et al., Nature (2013)

liquid droplets, vibrating polar
disks, ...

How to create a collective motion?

I Out-of-equilibrium phenomenon: active matter system with a large number of particles:

I consuming internal energy to self-propel,
I interacting via alignment and/or repulsion.

I Flocking transition: spontaneous synchronized motion of large clusters (flocks) emerges
for large densities and/or low noise.
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Different theoretical flocking models

First theoretical model (2D): The Vicsek model (1995)

I Self-propelled particles with constant speed, aligning in the local average direction.

θi(t+ 1) = 〈θ(t)〉r + ηξi(t)

xi(t+ 1) = xi(t) + vei(t+ 1)

with ei(t+ 1) in the direction of θi(t+ 1) and ξi(t) a random number in [−π, π].
I Ferromagnetic interactions where η plays the role of the temperature.

T. Vicsek et al., Phys. Rev. Lett. 75, 1226 (1995)

I Hydrodynamic limit belongs to universality class of the XY model.
J. Toner and Y. Tu, Phys. Rev. Lett. 75, 4326 (1995)
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I Spontaneous breaking of the continuous symmetry.
I First-order liquid-gas phase transition, with microphase separation.

A. P. Solon et al., Phys. Rev. Lett. 114, 068101 (2015)
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Different theoretical flocking models

The active Ising model (AIM)
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I The flocking transition is a first-order liquid-gas phase transition, without the
supercritical region (Tc = 1).

A. P. Solon and J. Tailleur, Phys. Rev. Lett. 111, 078101 (2013)

A. P. Solon and J. Tailleur, Phys. Rev. E 92, 042119 (2015)
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Different theoretical flocking models

The q-state active Potts model (APM) [q = 4 and q = 6]

I Hopping rate in preferred direction: D(1 + ε) and in other directions: D [1− ε/(q − 1)].
I Local Hamiltonian and fipping rate on site i:

HAPM
i = −

J

2ρi

ρi∑
k=1

∑
l 6=k

(qδσk
i ,σ

l
i
− 1), Wflip(σ → σ′) ∝ exp(−β∆HAPM

i ).

I Reorientation transition: tranverse bands (small ε) to longitudinal lanes (large ε).
I Flocking transition is a first-order liquid-gas phase transition.
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S. Chatterjee, M. Mangeat, R. Paul, and H. Rieger, EPL 130, 66001 (2020)

M. Mangeat, S. Chatterjee, R. Paul, and H. Rieger, Phys. Rev. E 102, 042601 (2020)
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Active clock model

The q-state active clock model (ACM)

I Motivation: investigate the q → +∞ limit and see if the VM is recovered:
I microphase separation in the coexistence phase,
I absence of the reorientation transition,
I quasi-long range order (QLRO) at v → 0 limit.

I N particles in a off-lattice Lx × Ly rectangular domain. Average density: ρ0 = N/LxLy .
I ith particle characterized by position xi and orientation θi ∈ {0, 2π/q, · · · , 2π(q − 1)/q}.
I Neighborhood Ni = {j with |xi − xj| < 1} of ith particle, constituted of ρi particles.
I Local clock Hamiltonian and local magnetization in the neighborhood Ni:

HACM
i = −

J

2ρi

∑
k∈Ni

∑
l∈Ni
l 6=k

cos(θl − θk), mi =
∑
k∈Ni

(cos θk, sin θk).

I At each time t, the ith particle in state θi = θ can
I hop in preferred direction φ = θ with a rate: D(1 + ε),
I hop in another direction φ 6= θ with a rate: D[1− ε/(q − 1)],
I flip to an orientation θ′ 6= θ, for a temperature T = β−1, with a rate:

Wflip(θ → θ′) = γ exp(−β∆HACM
i ) = γ exp

{
βJ

ρi

[
mi · (eθ′ − eθ) + 1− cos(θ′ − θ)

]}
.

I Rescaled quantities (for an infinite q limit well-defined):

D = qD and ε =
ε

q − 1
.

S. Chatterjee, M. Mangeat, and H. Rieger, EPL 138, 41001 (2022)
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Active clock model

Results for q = 4 and q =∞

q = 4-state active clock model

(a) q = 4, β = 2, ε- = 0.2, ρ0 = 1.5
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I Liquid-gas phase transition, with
macrophase separation in the coexistence
region (like AIM and APM).

I Presence of the reorientation transition
(like APM), from transverse band (low bias
ε) to longitudinal lane (high bias ε).

active XY model (q =∞)

(a) AXY, β = 2, ε- = 0.9, ρ0 = 1.5
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I Liquid-gas phase transition, with
microphase separation in the coexistence
region (like VM).

I Absence of the reorientation transition
(only transverse bands are observed).

S. Chatterjee, M. Mangeat, and H. Rieger, EPL 138, 41001 (2022)
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Active clock model

q-dependence on the ordered phase without activity (ε = 0)

I Magnetization distribution for β = 2, ρ0 = 3, in 50× 50 domain.
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I For q ≤ 5: “pinned” orientations (LRO), and for q ≥ 6: “unpinned” orientations (QLRO).

I The transition QLRO/LRO may depend on temperature, density and system size.
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Active clock model

Results for finite q values

Coexistence phase and phase diagram
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I Absence of the reorientation transition.
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I ∆n2 ∼ 〈n〉ξ and ∆m2 ∼ 〈n〉ξ, with

q 4 5 6 7 8 ∞
ξ 1.04 1.08 1.36 1.56 1.62 1.65

I macrophase separation ⇒ ξ = 1, normal
fluctuations (q ≤ 5).

I microphase separation ⇒ ξ > 1, giant
fluctuations (q ≥ 6).

I No asymptotic regime at large 〈n〉 observed
for our system sizes (Lx = Ly ≤ 800).
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Active clock model

Hydrodynamic description

I Hydrodynamic equations for the density ρ(x; t) and the magnetization m(x; t):

∂tρ = D0∇2ρ+
v

4
∇ · (∇ ·Q)− v∇ ·m,

∂tm = D0∇2m +
v

8

(
∂xx − ∂yy 2∂xy

2∂xy −∂xx + ∂yy

)
m−

v

2
(∇ρ+∇ ·Q)

+γ0

[
βJ − 1−

r

ρ2−ξ − κ
m2

ρ2

]
m.

with diffusion constant: D0 = D/4, self-propulsion velocity: v = Dε, ferromagnetic
interaction strength γ0 = qγ/(q − 1), κ = (βJ)2(7− 3βJ)/8, and nematic tensor

Q =
βJ

2ρ

(
m2
x −m2

y 2mxmy
2mxmy −m2

x +m2
y

)
.

I Impossible to conclude about macrophase/microphase separation in the coexistence
region with vectorial PDEs [Solon et al., PRL 114, 068101 (2015)]. We need to
introduce a noise term (future work).

S. Chatterjee, M. Mangeat, and H. Rieger, EPL 138, 41001 (2022)
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Conclusion

I For the q = 4-state ACM, we recover the same properties as the AIM and the APM:
macrophase separation, presence of the reorientation transition, and LRO phase.

I For the AXYM (q =∞), we recover the same properties as the VM: microphase
separation, absence of the reorientation transition, and QLRO phase.

I For other q values (at fixed β = 2 and ε = 0.9, with L ≤ 800): we observe macrophase
separation for q ≤ 5, and microphase separation for q ≥ 6, as well as a QLRO/LRO
transition at ε = 0.

Open questions and perspectives

I Do the number fluctuations in the liquid phase have an impact on the coexistence phase?

I Are the pinned/unpinned orientations in liquid phase equivalent to
macrophase/microphase separation in coexistence region?

I Are the pinned/unpinned orientations equivalent to normal/giant number fluctuations in
liquid phase?

I Many differences observed compared to the study made by Solon et al. [PRL 128,
208004 (2022)], for a slightly different model (different hopping/flipping rates). From
where these differences arise?

I Work on the hydrodynamic description to validate the simulation’s results.
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Thank you for your attention !

Following presentations

I Tuesday 28 at 12:00 PM: S. Chatterjee et al., Flocking of unfriendly species: The
two-species Vicsek model (BP 9.10 / TOE 317).

I Wednesday 29 at 03:45 PM: T. Guérin et al., How stickiness can speed up diffusion in
confined systems (DY 32.4 / ZEU 160).

I Thursday 30 at 01:00 PM: M. Mangeat et al., Wetting of reflecting plates by an active
Brownian fluid (DY 42.10 / P1).
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