

POLAR FLOCKS WITH DISCRETIZED DIRECTIONS: THE ACTIVE CLOCK MODEL APPROACHING THE VICSEK MODEL

M. $Mangeat^1$, S. $Chatterjee^1$, and H. $Rieger^{1,2}$

 $^1\mathrm{Center}$ for Biophysics & Department for Theoretical Physics, Saarland University, Saarbrücken

²INM – Leibniz Institute for New Materials, Campus D2 2, Saarbrücken, Germany

Monday, March 27th

DPG Meeting - Dresden 2023 (DY 10.2)

1 Introduction on collective motions

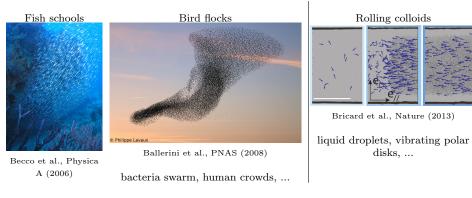
2 Different theoretical flocking models

3 Active clock model

4 Conclusion

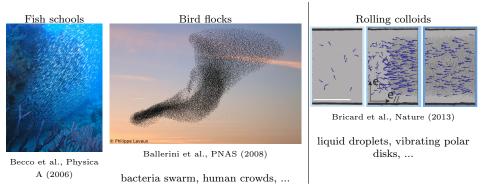
Introduction on collective motions

Natural and artificial collective motions



Introduction on collective motions

Natural and artificial collective motions



How to create a collective motion?

▶ Out-of-equilibrium phenomenon: active matter system with a large number of particles:

- ▶ consuming internal energy to self-propel,
- ▶ interacting via alignment and/or repulsion.
- ▶ Flocking transition: spontaneous synchronized motion of large clusters (*flocks*) emerges for large densities and/or low noise.

First theoretical model (2D): The Vicsek model (1995)

▶ Self-propelled particles with constant speed, aligning in the local average direction.

$$\theta_i(t+1) = \langle \theta(t) \rangle_r + \eta \xi_i(t)$$

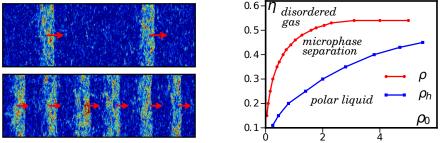
$$\mathbf{x}_i(t+1) = \mathbf{x}_i(t) + v \mathbf{e}_i(t+1)$$

with $\mathbf{e}_i(t+1)$ in the direction of $\theta_i(t+1)$ and $\xi_i(t)$ a random number in $[-\pi, \pi]$.

 \blacktriangleright Ferromagnetic interactions where η plays the role of the temperature.

T. Vicsek et al., Phys. Rev. Lett. 75, 1226 (1995)

- ▶ Hydrodynamic limit belongs to universality class of the XY model.
- J. Toner and Y. Tu, Phys. Rev. Lett. 75, 4326 (1995)

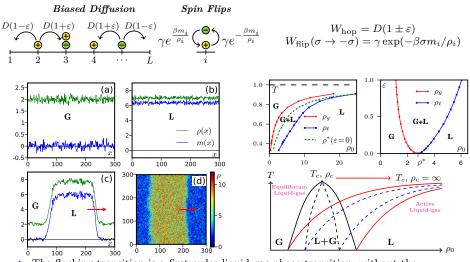


▶ Spontaneous breaking of the continuous symmetry.

- ▶ First-order liquid-gas phase transition, with microphase separation.
- A. P. Solon et al., Phys. Rev. Lett. 114, 068101 (2015)

Different theoretical flocking models

The active Ising model (AIM)



▶ The flocking transition is a first-order liquid-gas phase transition, without the supercritical region $(T_c = 1)$.

A. P. Solon and J. Tailleur, Phys. Rev. Lett. 111, 078101 (2013)

A. P. Solon and J. Tailleur, Phys. Rev. E 92, 042119 (2015)

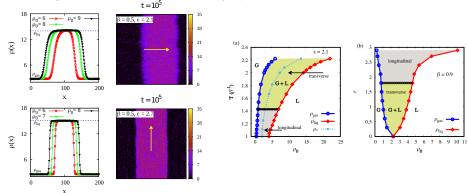
The q-state active Potts model (APM) [q = 4 and q = 6]

▶ Hopping rate in preferred direction: D(1 + ε) and in other directions: D [1 - ε/(q - 1)].
▶ Local Hamiltonian and fipping rate on site i:

$$H_i^{\rm APM} = -\frac{J}{2\rho_i} \sum_{k=1}^{\rho_i} \sum_{l \neq k} (q \delta_{\sigma_i^k, \sigma_i^l} - 1), \qquad W_{\rm flip}(\sigma \to \sigma') \propto \exp(-\beta \Delta H_i^{\rm APM}).$$

▶ Reorientation transition: transes bands (small ε) to longitudinal lanes (large ε).

▶ Flocking transition is a first-order liquid-gas phase transition.



S. Chatterjee, M. Mangeat, R. Paul, and H. Rieger, EPL 130, 66001 (2020)
M. Mangeat, S. Chatterjee, R. Paul, and H. Rieger, Phys. Rev. E 102, 042601 (2020)

The q-state active clock model (ACM)

- ▶ Motivation: investigate the $q \to +\infty$ limit and see if the VM is recovered:
 - ▶ microphase separation in the coexistence phase,
 - \blacktriangleright absence of the reorientation transition,
 - ▶ quasi-long range order (QLRO) at $v \to 0$ limit.

S. Chatterjee, M. Mangeat, and H. Rieger, EPL 138, 41001 (2022)

The q-state active clock model (ACM)

- ▶ Motivation: investigate the $q \to +\infty$ limit and see if the VM is recovered:
 - ▶ microphase separation in the coexistence phase,
 - \blacktriangleright absence of the reorientation transition,
 - ▶ quasi-long range order (QLRO) at $v \to 0$ limit.
- ▶ N particles in a off-lattice $L_x \times L_y$ rectangular domain. Average density: $\rho_0 = N/L_x L_y$.
- ▶ *i*th particle characterized by position \mathbf{x}_i and orientation $\theta_i \in \{0, 2\pi/q, \cdots, 2\pi(q-1)/q\}$.
- ▶ Neighborhood $\mathcal{N}_i = \{j \text{ with } |\mathbf{x}_i \mathbf{x}_j| < 1\}$ of *i*th particle, constituted of ρ_i particles.
- ▶ Local clock Hamiltonian and local magnetization in the neighborhood \mathcal{N}_i :

$$H_i^{\text{ACM}} = -\frac{J}{2\rho_i} \sum_{\substack{k \in \mathcal{N}_i \\ l \neq k}} \sum_{\substack{l \in \mathcal{N}_i \\ l \neq k}} \cos(\theta_l - \theta_k), \quad \mathbf{m_i} = \sum_{\substack{k \in \mathcal{N}_i \\ l \neq k}} (\cos\theta_k, \sin\theta_k).$$

S. Chatterjee, M. Mangeat, and H. Rieger, EPL 138, 41001 (2022)

The q-state active clock model (ACM)

- ▶ Motivation: investigate the $q \to +\infty$ limit and see if the VM is recovered:
 - ▶ microphase separation in the coexistence phase,
 - $\blacktriangleright\,$ absence of the reorientation transition,
 - ▶ quasi-long range order (QLRO) at $v \to 0$ limit.
- ▶ N particles in a off-lattice $L_x \times L_y$ rectangular domain. Average density: $\rho_0 = N/L_x L_y$.
- ▶ *i*th particle characterized by position \mathbf{x}_i and orientation $\theta_i \in \{0, 2\pi/q, \cdots, 2\pi(q-1)/q\}$.
- ▶ Neighborhood $\mathcal{N}_i = \{j \text{ with } |\mathbf{x}_i \mathbf{x}_j| < 1\}$ of *i*th particle, constituted of ρ_i particles.
- ▶ Local clock Hamiltonian and local magnetization in the neighborhood \mathcal{N}_i :

$$H_i^{\text{ACM}} = -\frac{J}{2\rho_i} \sum_{\substack{k \in \mathcal{N}_i \\ l \neq k}} \cos(\theta_l - \theta_k), \quad \mathbf{m_i} = \sum_{\substack{k \in \mathcal{N}_i \\ l \neq k}} (\cos \theta_k, \sin \theta_k).$$

- ▶ At each time t, the *i*th particle in state $\theta_i = \theta$ can
 - ▶ hop in preferred direction $\phi = \theta$ with a rate: $D(1 + \varepsilon)$,
 - ▶ hop in another direction $\phi \neq \theta$ with a rate: $D[1 \varepsilon/(q 1)]$,
 - ▶ flip to an orientation $\theta' \neq \theta$, for a temperature $T = \beta^{-1}$, with a rate:

$$W_{\text{flip}}(\theta \to \theta') = \gamma \exp(-\beta \Delta H_i^{\text{ACM}}) = \gamma \exp\left\{\frac{\beta J}{\rho_i} \left[\mathbf{m_i} \cdot (\mathbf{e}_{\theta'} - \mathbf{e}_{\theta}) + 1 - \cos(\theta' - \theta)\right]\right\}.$$

 \blacktriangleright Rescaled quantities (for an infinite q limit well-defined):

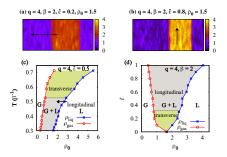
$$\overline{D} = qD$$
 and $\overline{\varepsilon} = \frac{\varepsilon}{q-1}$.

S. Chatterjee, M. Mangeat, and H. Rieger, EPL 138, 41001 (2022)

MATTHIEU MANCEAT

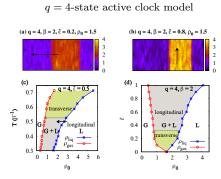
Results for q = 4 and $q = \infty$

q = 4-state active clock model



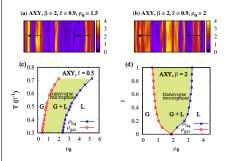
- ▶ Liquid-gas phase transition, with macrophase separation in the coexistence region (like AIM and APM).
- Presence of the reorientation transition (like APM), from transverse band (low bias ε) to longitudinal lane (high bias ε).
- S. Chatterjee, M. Mangeat, and H. Rieger, EPL 138, 41001 (2022)

Results for q = 4 and $q = \infty$



- ▶ Liquid-gas phase transition, with macrophase separation in the coexistence region (like AIM and APM).
- Presence of the reorientation transition (like APM), from transverse band (low bias ε) to longitudinal lane (high bias ε).

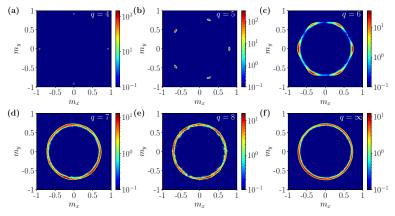
active XY model $(q = \infty)$



- ► Liquid-gas phase transition, with microphase separation in the coexistence region (like VM).
- ► Absence of the reorientation transition (only transverse bands are observed).
- S. Chatterjee, M. Mangeat, and H. Rieger, EPL 138, 41001 (2022)

q-dependence on the ordered phase without activity ($\varepsilon = 0$)

▶ Magnetization distribution for $\beta = 2$, $\rho_0 = 3$, in 50 × 50 domain.

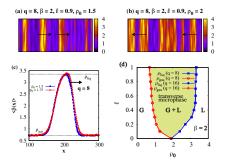


▶ For $q \leq 5$: "pinned" orientations (LRO), and for $q \geq 6$: "unpinned" orientations (QLRO).

- ▶ The transition QLRO/LRO may depend on temperature, density and system size.
- S. Chatterjee, M. Mangeat, and H. Rieger, EPL 138, 41001 (2022)

Results for finite q values

Coexistence phase and phase diagram

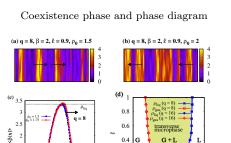


- ► Liquid-gas phase transition, with microphase separation in the coexistence region (like VM).
- ▶ Absence of the reorientation transition.

S. Chatterjee, M. Mangeat, and H. Rieger, EPL 138, 41001 (2022)

Active clock model

Results for finite q values



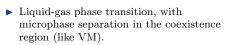
0.2

0

0

 $\beta = 2$

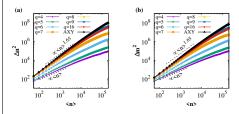
ρn



300

▶ Absence of the reorientation transition.

Number and magnetization fluctuations in liquid phase



•
$$\Delta n^2 \sim \langle n \rangle^{\xi}$$
 and $\Delta m^2 \sim \langle n \rangle^{\xi}$, with

q	4	5	6	7	8	∞
ξ	1.04	1.08	1.36	1.56	1.62	1.65

- ▶ macrophase separation $\Rightarrow \xi = 1$, normal fluctuations ($q \leq 5$).
- microphase separation $\Rightarrow \xi > 1$, giant fluctuations $(q \ge 6)$.
- ▶ No asymptotic regime at large $\langle n \rangle$ observed for our system sizes $(L_x = L_y \leq 800)$.
- S. Chatterjee, M. Mangeat, and H. Rieger, EPL 138, 41001 (2022)

1.5

0.5 L 100

200

Active clock model Hydrodynamic description

▶ Hydrodynamic equations for the density $\rho(\mathbf{x}; t)$ and the magnetization $\mathbf{m}(\mathbf{x}; t)$:

$$\begin{split} \partial_t \rho &= D_0 \nabla^2 \rho + \frac{v}{4} \nabla \cdot (\nabla \cdot Q) - v \nabla \cdot \mathbf{m}, \\ \partial_t \mathbf{m} &= D_0 \nabla^2 \mathbf{m} + \frac{v}{8} \begin{pmatrix} \partial_{xx} - \partial_{yy} & 2 \partial_{xy} \\ 2 \partial_{xy} & - \partial_{xx} + \partial_{yy} \end{pmatrix} \mathbf{m} - \frac{v}{2} \left(\nabla \rho + \nabla \cdot Q \right) \\ &+ \gamma_0 \left[\beta J - 1 - \frac{r}{\rho^{2-\xi}} - \kappa \frac{\mathbf{m}^2}{\rho^2} \right] \mathbf{m}. \end{split}$$

with diffusion constant: $D_0 = \overline{D}/4$, self-propulsion velocity: $v = \overline{D}\overline{\varepsilon}$, ferromagnetic interaction strength $\gamma_0 = q\gamma/(q-1)$, $\kappa = (\beta J)^2(7-3\beta J)/8$, and nematic tensor

$$Q = \frac{\beta J}{2\rho} \begin{pmatrix} m_x^2 - m_y^2 & 2m_x m_y \\ 2m_x m_y & -m_x^2 + m_y^2 \end{pmatrix}.$$

- ▶ Impossible to conclude about macrophase/microphase separation in the coexistence region with vectorial PDEs [Solon *et al.*, PRL **114**, 068101 (2015)]. We need to introduce a noise term (future work).
- S. Chatterjee, M. Mangeat, and H. Rieger, EPL 138, 41001 (2022)

Conclusion

- ▶ For the q = 4-state ACM, we recover the same properties as the AIM and the APM: macrophase separation, presence of the reorientation transition, and LRO phase.
- ▶ For the AXYM $(q = \infty)$, we recover the same properties as the VM: microphase separation, absence of the reorientation transition, and QLRO phase.
- ▶ For other q values (at fixed $\beta = 2$ and $\overline{\varepsilon} = 0.9$, with $L \leq 800$): we observe macrophase separation for $q \leq 5$, and microphase separation for $q \geq 6$, as well as a QLRO/LRO transition at $\varepsilon = 0$.

Conclusion

- ▶ For the q = 4-state ACM, we recover the same properties as the AIM and the APM: macrophase separation, presence of the reorientation transition, and LRO phase.
- ▶ For the AXYM $(q = \infty)$, we recover the same properties as the VM: microphase separation, absence of the reorientation transition, and QLRO phase.
- ▶ For other q values (at fixed $\beta = 2$ and $\overline{\varepsilon} = 0.9$, with $L \leq 800$): we observe macrophase separation for $q \leq 5$, and microphase separation for $q \geq 6$, as well as a QLRO/LRO transition at $\varepsilon = 0$.

Open questions and perspectives

- ▶ Do the number fluctuations in the liquid phase have an impact on the coexistence phase?
- ► Are the pinned/unpinned orientations in liquid phase equivalent to macrophase/microphase separation in coexistence region?
- ▶ Are the pinned/unpinned orientations equivalent to normal/giant number fluctuations in liquid phase?
- ▶ Many differences observed compared to the study made by Solon *et al.* [PRL **128**, 208004 (2022)], for a slightly different model (different hopping/flipping rates). From where these differences arise?
- ▶ Work on the hydrodynamic description to validate the simulation's results.

Thank you for your attention !

Following presentations

- ▶ Tuesday 28 at 12:00 PM: S. Chatterjee *et al.*, Flocking of unfriendly species: The two-species Vicsek model (BP 9.10 / TOE 317).
- ▶ Wednesday 29 at 03:45 PM: T. Guérin *et al.*, How stickiness can speed up diffusion in confined systems (DY 32.4 / ZEU 160).
- ▶ Thursday 30 at 01:00 PM: M. Mangeat *et al.*, Wetting of reflecting plates by an active Brownian fluid (DY 42.10 / P1).

References

- ▶ S. Chatterjee, M. Mangeat, R. Paul, and H. Rieger, *Flocking and reorientation transition in the 4-state active Potts model*, EPL **130**, 66001 (2020).
- ▶ M. Mangeat, S. Chatterjee, R. Paul, and H. Rieger, *Flocking with a q-fold discrete symmetry: Band-to-lane transition in the active Potts model*, Phys. Rev. E **102**, 042601 (2020).
- ▶ S. Chatterjee, M. Mangeat, and H. Rieger, *Polar flocks with discretized directions: the active clock model approaching the Vicsek model*, EPL **138**, 41001 (2022).