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Introduction : dispersion in confined media

Some examples of dispersion in confined media 1

I How fast does a cloud of tracer particles disperse in heterogeneous media ?

I Active field of research.

I Dispersion in confined media :

biological cells

Bressloff and Newby, RMP (2013)

zeolites

Karger and Ruthven (1992)

ion channels
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Introduction : dispersion in confined media

Some examples of dispersion in confined media 2

I Dispersion in confined media :

contaminant spreading in
porous media

Tzella and Vanneste, PRL (2016)

Leitmann and Franosch, PRL (2017)

mapping onto diffusion in
channels

Dagdug et al., JCP (2012)

microfluidic devices

Yang et al., PNAS (2017)

Aminian et al., Science (2016)
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Introduction : dispersion in confined media

The dispersion in symmetric two-dimensional periodic channels

x
a

H
h(x)

L

I Periodicity of the channel : L.

I Height of the channel : h(x) = aζ(x), where a is the minimum height.

I We define ε = a/L and ξ =H/a, where H is the variation of height.

I Microscopic, homogeneous and isotropic, diffusivity D0. What global
dispersion appears at long time ?
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Introduction : dispersion in confined media

Dynamics of overdamped Brownian particles

I The overdamped Langevin equation for the position

dXt

dt
=
√

2D0η

ηi(t)ηj(t′) = δijδ(t− t′)

I The Fokker-Planck equation for the probability density function (pdf)

∂p

∂t
= D0∇2p = −∇ · J

n ·∇p = n · J = 0

Stationary properties studied

I Mean squared displacement (MSD) : X2(t).

I Long-time effective diffusivity along the channel : De = lim
t→∞

x2(t)
2t .
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The Fick-Jabobs approximation : study of narrow channels

Famous traditional approach : reduction to one-dimensional problem

x

h(x)

L

I narrow regions = entropic barriers
I wide regions = entropic traps
I Entropic trapping of particles
I Slowing down of dispersion

De ≤ D0

I Marginal probability p(x) ∝ h(x) ∝ exp[−βϕ(x)]
I Effective entropy s(x) = −βϕ(x) = lnh(x)
I Long-time effective diffusivity

De

D0
=

1

〈exp(−βϕ)〉〈exp(βϕ)〉 =
1

〈h〉〈h−1〉 ≤ 1 [Jensen’s inequality]

Lifson and Jackson, JCP (1961)

I Spatial average

〈h〉 =
1

L

∫ L

0

dx h(x)
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The Fick-Jabobs approximation : study of narrow channels

Fick-Jacobs’ one-dimensional equation

x

h(x)

L

I Reduced one-dimensional pdf (assuming fast equilibration in y)

p∗(x; t) =

∫ h(x)

−h(x)
dy p(x, y; t) ' 2h(x)p0(x; t)

I Fick-Jacobs’ equation

∂p∗

∂t
= D0

∂

∂x

[
∂p∗

∂x
− βϕ′(x)p∗

]
= D0

∂

∂x

[
∂p∗

∂x
− h′(x)

h(x)
p∗
]

Jacobs, Diffusion Processes (1935)
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The Fick-Jabobs approximation : study of narrow channels

Existing improvements of Fick-Jacobs approximation

I Modified Fick-Jacobs’ equation

∂p∗

∂t
=

∂

∂x
D(x)

[
∂p∗

∂x
− h′(x)

h(x)
p∗
]

I Effective one-dimensional diffusivity

D(x) = D0

(
1− 1

3
h′(x)2 + · · ·

)
' D0

arctanh′(x)

h′(x)

I Long-time effective diffusivity

De =
1

〈h〉〈D−1h−1〉 =
D0

〈h〉〈h−1〉

(
1− 1

3

〈h′2/h〉
〈h−1〉 + · · ·

)

I Valid when h′(x)� 1, for continuous channels.
I Effectively one-dimensional Markovian process.

Zwanzig, JPC (1991)

Reguera and Rubí, PRE (2001)

Kalinay and Percus, PRE (2006)

Bradley, PRE (2009)

Dorfman and Yariv, JCP (2014)
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The Fick-Jabobs approximation : study of narrow channels

Limits of Fick-Jacobs improvements

I The FJ approximation is valid only for slowly varying channels (ε� 1).

I The effective one-dimensional process is clearly non Markovian, the
definition of an effective diffusivity D(x) is not valid.

I What happens for wide channels (ε� 1) ? the intermediate range of ε ?
sharp-neck channels ? discontinuous channels ?
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Different regimes of dispersion : narrow to wide channels

Starting point : Exact formula of De, non relying on 1d-reduction

I Explicit equation for the long-time effective diffusivity

De

D0
= 1− 1

〈h〉

∫ L

0

dx h′(x) f(x, h(x))

I Partial differential equations for the auxilliary function f(x, y)

x
h(x)

L

∂2f

∂x2
+
∂2f

∂y2
= 0

h′(x)
∂f

∂x

∣∣∣∣
y=h(x)

− ∂f

∂y

∣∣∣∣
y=h(x)

= h′(x)

f(x+ L, y) = f(x, y)

Guérin and Dean, PRE (2015)
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Different regimes of dispersion : narrow to wide channels

Simplifications using complex analysis

I Auxilliary function f as an analytic function w(z = x+ iy)

x
h(x)

L

f(x, y) =
1

2
[w(x+ iy) + w(x− iy)]

= Rew(x+ iy)

Imw(x+ ih(x)) = h(x)− C
w(z + L) = w(z)

I Long-time effective diffusivity

De

D0
=

C

〈h〉
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Different regimes of dispersion : narrow to wide channels

Back to the Fick Jacobs approximation when ε� 1

I Leading order of perturbation :

Imw(x+ ih(x)) = h(x)− C

h(x)w′(x) = h(x)− C
w′(x) = 1− Ch(x)−1

I The periodicity gives C = 〈h−1〉−1
I Fick-Jacobs’ effective diffusivity

De

D0
=

C

〈h〉 =
1

〈h〉〈h−1〉

I Corrections up to O(ε6) :

De

D0
=

1

〈ζ〉

[
〈ζ−1〉+

ε2

3
〈ζ ′2/ζ〉 − ε4

45

(
4〈ζ ′4/ζ〉+ 〈ζ ′′2ζ〉

)

+
ε6

945

(
44〈ζ ′6/ζ〉+ 5〈ζ2ζ ′′3〉+ 45〈ζ ′3ζ ′′2〉+ 2〈ζ3ζ ′′′2〉

)]−1
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Different regimes of dispersion : narrow to wide channels

Numerical results : validity of the perturbative expansion
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x
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y
/a
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I Improvements of De at each order.
I What happens for wide channels (ε� 1) ?
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Different regimes of dispersion : narrow to wide channels

Entropic trapping of particles in wide channels

x
h(x)a

L

I Particles trapped in regions |y| > a

〈x2(t)〉 = 2Det ≥ 2D0t
′

I t′ is the time spend in |y| < a region.

I The long-time effective diffusivity is bounded

1 ≥ De

D0
≥ t′

t
=

a

〈h〉

I For a� L, the lower bound becomes exact.

I Presence of a boundary layer at y = a.
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Different regimes of dispersion : narrow to wide channels

Finding the finite corrections in the wide channel regime

Φ = L/2

Φ = −L/2

(a)

w̃(z) = w(z)− z = Φ(x, y) + iΨ(x, y)

Im w̃(x+ ih(x)) = −C
w̃(z + L) = w̃(z)− L

I Conformal mapping G(z) = exp[−iπ(z − ia)]

I Analogy to an electrostatic problem w̃(z) = 1
π arcsin

[
iG(z)−1

]

I Long-time effective diffusivity, with a correction O(1/ε)

De

D0
=

a

〈h〉

(
1 +

ln 2

πε

)

I Identification of a universal constant ln 2/π.
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Different regimes of dispersion : narrow to wide channels

Finding the finite corrections in the wide channel regime

Φ = L/2
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(a)
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Different regimes of dispersion : narrow to wide channels

Finding the finite corrections in the wide channel regime

Φ = L/2

Φ = −L/2

(a)
ε = 0.6

(b)

w̃(z) = w(z)− z = Φ(x, y) + iΨ(x, y)

Im w̃(x+ ih(x)) = −C
w̃(z + L) = w̃(z)− L

I Conformal mapping G(z) = exp[−iπ(z − ia)]

I Analogy to an electrostatic problem w̃(z) = 1
π arcsin

[
iG(z)−1

]

I Long-time effective diffusivity, with a correction O(1/ε)

De

D0
=

a

〈h〉

(
1 +

ln 2

πε

)

I Identification of a universal constant ln 2/π.
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Different regimes of dispersion : narrow to wide channels

Finding the finite corrections in the wide channel regime

Φ = L/2

Φ = −L/2

(a)
ε = 1.0

(b)

w̃(z) = w(z)− z = Φ(x, y) + iΨ(x, y)

Im w̃(x+ ih(x)) = −C
w̃(z + L) = w̃(z)− L

I Conformal mapping G(z) = exp[−iπ(z − ia)]

I Analogy to an electrostatic problem w̃(z) = 1
π arcsin

[
iG(z)−1

]

I Long-time effective diffusivity, with a correction O(1/ε)

De

D0
=

a

〈h〉

(
1 +

ln 2

πε

)

I Identification of a universal constant ln 2/π.
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Different regimes of dispersion : narrow to wide channels

Finding the finite corrections in the wide channel regime

Φ = L/2

Φ = −L/2

(a)
ε = 3.0

(b)

w̃(z) = w(z)− z = Φ(x, y) + iΨ(x, y)

Im w̃(x+ ih(x)) = −C
w̃(z + L) = w̃(z)− L

I Conformal mapping G(z) = exp[−iπ(z − ia)]

I Analogy to an electrostatic problem w̃(z) = 1
π arcsin

[
iG(z)−1

]

I Long-time effective diffusivity, with a correction O(1/ε)

De

D0
=

a

〈h〉

(
1 +

ln 2

πε

)

I Identification of a universal constant ln 2/π.
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Different regimes of dispersion : narrow to wide channels

Finding the finite corrections in the wide channel regime

Φ = L/2
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(a)
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Different regimes of dispersion : narrow to wide channels

Intermediate regime of dispersion

I Padé approximant with ε� 1 and ε� 1 expansions

De

D0
=

1

〈h〉〈h−1〉
1 + a1ε+ a2ε

2 + · · ·
1 + b1ε+ b2ε2 + · · ·
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D
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D
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I The Padé approximant fit well the numerical data for smooth channels.
I What happens in the large-ξ limit, in presence of small openings ?
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Different regimes of dispersion : narrow to wide channels

Narrow escape regime for small openings - ε� 1 and ξ � 1
Behavior of the height near the neck : ζ(x) ' 1 + ξxν

I Sharp-neck channels (ν < 1)

a

τsh

I τsh : FPT to reach a small opening
I Long-time effective diffusivity

De

D0
=

L2

2D0τsh
=

L

〈h〉
π

2 ln(K/ε)

I DFJ independant of ξ.
I Expression valid for smooth channels

if H/L = εξ is not too big.

I Smooth-neck channels (ν > 1)

a

τsm

I τsm : FPT to reach a small opening.
I Fick-Jacobs’ diffusivity is

DFJ =
L2

2τsm
' ξ1/ν−1

I Valid approach for H/L = εξ � 1.
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Different regimes of dispersion : narrow to wide channels

Classification of dispersion regimes for smooth-neck channels (ν > 1)

Slowly Varying
Channels

Narrow
Escape

Wide
Channels

ε = a/L

ξ
=
H
/a

Narrow Escape
De

D0
' L
〈h〉

π
2 ln(K/ε)

Slowly Varying
Channels
De

D0
' 1
〈h〉〈h−1〉

Narrow Escape
Funnel

Wide Channels
De

D0
' a
〈h〉
(
1 + ln 2

πε

)

De

D0
' 1

εξ 1/ν
=

1

ε
=

1

x
h(x)

H

a

L

I Three regimes of dispersion (d = 2 and 3).
I Geometry controlled dispersion in channels.
I What happens for discontinuous channels ?
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Different regimes of dispersion : narrow to wide channels

Classification of dispersion regimes for sharp-neck channels (ν < 1)

Slowly Varying
Channels

Narrow
Escape

Wide
Channels

ε = a/L

ξ
=
H
/a

Narrow Escape
De

D0
' L
〈h〉

π
2 ln(K/ε)

Slowly Varying
Channels
De

D0
' 1
〈h〉〈h−1〉

Wide Channels
De

D0
' a
〈h〉
(
1 + ln 2

πε

)

De

D0
' 1

εξ
=

1 ε
=

1

x

h(x)

H

a

L

I Three regimes of dispersion (d = 2 and 3).
I Geometry controlled dispersion in channels.
I What happens for discontinuous channels ?
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Special case of narrow discontinuous channels

Failure of perturbation theory (h′(x) =∞)

h+

h−

h(x)

x

I Discontinuity at x = 0. Perturbative solution valid at x 6= 0.
I Boundary layer at the discontinuity.

I Conformal mapping z = H(Ω) via a Schwarz-Christoffel transformation

H ′(Ω) = H0

√
Ω− 1

Ω
√

Ω− k
, k2 = h−/h+
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Special case of narrow discontinuous channels

Failure of perturbation theory (h′(x) =∞)

H(1) = ih+

H(k) = ih−

0 1 k

H(Ω)

I Discontinuity at x = 0. Perturbative solution valid at x 6= 0.
I Boundary layer at the discontinuity.
I Conformal mapping z = H(Ω) via a Schwarz-Christoffel transformation

H ′(Ω) = H0

√
Ω− 1

Ω
√

Ω− k
, k2 = h−/h+
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Special case of narrow discontinuous channels

Trapping rate associated to discontinuities

I Long-time effective diffusivity, with a correction O(ε) instead of O(ε2) !

De

D0
=

1

〈h〉〈h−1〉

(
1− ε

π〈ζ−1〉
∑

i

γ(νi)

)

I The discontinuity plays the role of a local trap.
I Exact function γ(ν), ν = h+/h− ≤ 1

γ(ν) =
1 + ν2

ν
ln

1 + ν

1− ν − 2 ln
4ν

1− ν2

I Berezhkovskii’s numerical interpolation

γ(ν) = 2(1− ν)2 ln

(
2.6 +

0.7

ν

)

I Kalinay and Percus only give γ(1/2) = 0.7848.

Berezhkovskii et al., JCP (2009)

Kalinay and Percus, PRE (2010)
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Special case of narrow discontinuous channels

Three kinds of discontinuities

h+

h−

h(x)

x h0 = h+

h−

γ(ν) =
1 + ν2

ν
ln

1 + ν

1− ν − 2 ln
4ν

1− ν2

ν = h+/h− ≤ 1

h0

h− = h+

h(x)

x h0

h− = h+

γ(ν) = −4 ln sin
πν

2

ν = h0/h− ≤ 1

h0

h−
h+

h(x)

x h0

h+

h−

γ(ν, ν̃) =
1 + (νν̃)2

νν̃
ln
ν + ν̃

ν − ν̃−2 ln
4νν̃

ν2 − ν̃2

ν and ν̃ functions of h0/h− and h0/h+.
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Conclusion

What we have characterized

I Exact PDEs to get the effective diffusivity, simplified by the use of
complex analysis in two dimensions through a compact formalism.

I Fick-Jacobs approximation revisited and wide channels limit
characterized by a universal constant.

I Classification of all regimes of dispersion for periodic smooth-neck and
sharp-neck channels.

I Discontinuities associated to an effective local trapping.

I The dispersion of particles is controlled by the geometry of the channel.

Geometry controlled dispersion in periodic corrugated channels, EPL 118 (2017).

Dispersion in two dimensional channels — the Fick-Jacobs approximation revisited, JSM (2017).

Dispersion in two dimensional periodic channels with discontinuous profiles, in preparation.
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Conclusion

What is the next step ?

I What happens with a longitudinal force ? In presence of hydrodynamics
flows for example.

I What happens with a normal force ? In presence of gravity for example.

I How to characterize the dispersion in moving channels h(x, t) ? For
biological systems for example.

I Is the complex analysis possible in 3-dimensions ?
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Thank you for your attention !
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Some of studies done during my thesis

Dispersion of particles in periodic
lattice of spheres

I attractive sphere F = −∇V

I V (r) = −E exp(−λ(r −R))θ(r −R)

I non monotonic dispersion

−4 −3 −2 −1 0 1 2 3 4
βE

0.70

0.75

0.80

0.85

D
e/
D

0

βEmax = 1.7

Putzel et al., PRL (2014)

Dispersion of particles into periodic

channels

I no drift F = 0

I entropic effects of the boundaries
I slowing down of dynamics
I control of the dispersion

Mangeat et al., EPL (2017), JSP (2017)
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Some of studies done during my thesis

Optical trapping of diffusive
particles

0.0 0.5 1.0 1.5 2.0 2.5 3.0
ρ

−6

−4

−2

0

2

4

6

z

I F = −∇V + Fnc

I Non conservative force

Fnc = F0

(
1− ρ2

a2

)
ez

I non equilibrium state
I presence of a stationary current

Grier et al., PRL (2008), RSTA (2017)

Self-propelled autochemotactic
walker

I Force due to the concentration of
walkers F = −λ∇c

dXt

dt
= Λ

∫ t

0

ds K(Xs, s) +
√

2D0η

I non Markovian dynamics
I intermediate time ballistic dynamics
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500

x

Löwen et al., PRE (2009)
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