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How to characterize the dispersion of small particles in channels ?

Matthieu Mangeat Geometry controlled dispersion in periodic channels 1 / 27



1 Introduction : dispersion in confined media

2 The Fick-Jabobs approximation : study of narrow channels

3 Different regimes of dispersion : narrow to wide channels

4 Special case of narrow discontinuous channels

5 Conclusion

Matthieu Mangeat Geometry controlled dispersion in periodic channels 2 / 27



1 Introduction : dispersion in confined media

2 The Fick-Jabobs approximation : study of narrow channels

3 Different regimes of dispersion : narrow to wide channels

4 Special case of narrow discontinuous channels

5 Conclusion

Matthieu Mangeat Geometry controlled dispersion in periodic channels 3 / 27



Introduction : dispersion in confined media

Some examples of dispersion in confined media 1

I How fast does a cloud of tracer particles disperse in heterogeneous media ?

I Active field of research.

biological cells

Bressloff and Newby, RMP (2013)

zeolites

Karger and Ruthven (1992)

ion channels
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Introduction : dispersion in confined media

Some examples of dispersion in confined media 2

contaminant spreading in
porous media

Leitmann and Franosch, PRL (2017)

microfluidic devices

Yang et al., PNAS (2017)

Aminian et al., Science (2016)
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Introduction : dispersion in confined media

The dispersion in symmetric two-dimensional periodic channels

x
a

H
h(x)

L

I Periodicity of the channel : L.
I Height of the channel : h(x) = aζ(x), where a is the minimum height.
I We define ε = a/L and ξ =H/a, where H is the variation of height.
I Microscopic, homogeneous and isotropic, diffusivity D0. What global

dispersion appears at long time ?

I Long-time effective diffusivity along the channel : De = lim
t→∞

x2(t)
2t .
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The Fick-Jabobs approximation : study of narrow channels

Famous traditional approach : reduction to one-dimensional problem

x

h(x)

L

I narrow regions = entropic barriers
I wide regions = entropic traps
I Entropic trapping of particles
I Slowing down of dispersion

De ≤ D0

I Marginal stationary probability p∗s(x) ∝ h(x) ∝ exp[−βϕ(x)]

I Effective potential −βϕ(x) = lnh(x)

I Long-time effective diffusivity

De

D0
=

1

〈exp(−βϕ)〉〈exp(βϕ)〉 =
1

〈h〉〈h−1〉 ≤ 1 [Jensen’s inequality]

I Spatial average

〈h〉 =
1

L

∫ L

0

dx h(x)
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The Fick-Jabobs approximation : study of narrow channels

Fick-Jacobs’ one-dimensional equation

x

h(x)

L

I Effective one-dimensional potential

−βϕ(x) = lnh(x)

I Effective one-dimensional diffusivity

D(x) = D0

(
1− 1

3
h′(x)2 + · · ·

)

I Modified Fick-Jacobs’ equation

∂p∗

∂t
=

∂

∂x
D(x)

[
∂p∗

∂x
+ βϕ′(x)p∗

]

I Long-time effective diffusivity

De =
1

〈h〉〈D−1h−1〉
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The Fick-Jabobs approximation : study of narrow channels

Limits of Fick-Jacobs improvements

I The FJ approximation is valid for slowly varying channels (h′(x)� 1).

I The effective one-dimensional process is clearly non Markovian, the
definition of an effective diffusivity D(x) is not valid.

I What happens for wide channels (ε� 1) ? the intermediate range of ε ?
sharp-neck channels ? discontinuous channels ? (h′(x) =∞)
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Different regimes of dispersion : narrow to wide channels

Starting point : Exact formula of De, non relying on 1d-reduction

I Explicit equation for the long-time effective diffusivity

De

D0
= 1− 1

〈h〉

∫ L

0

dx h′(x) f(x, h(x))

I Partial differential equations for the auxilliary function f(x, y)

x
h(x)

L

∂2f

∂x2
+
∂2f

∂y2
= 0

h′(x)
∂f

∂x

∣∣∣∣
y=h(x)

− ∂f

∂y

∣∣∣∣
y=h(x)

= h′(x)

f(x+ L, y) = f(x, y)

Guérin and Dean, PRE (2015)
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Different regimes of dispersion : narrow to wide channels

Simplifications using complex analysis

I Auxilliary function f as an analytic function w(z = x+ iy)

x
h(x)

L

f(x, y) =
1

2
[w(x+ iy) + w(x− iy)]

= Rew(x+ iy)

Imw(x+ ih(x)) = h(x)− C
w(z + L) = w(z)

I Long-time effective diffusivity

De

D0
=

C

〈h〉
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Different regimes of dispersion : narrow to wide channels

Back to the Fick Jacobs approximation when ε� 1

I Corrections up to O(ε6) :

De

D0
=
C0 − ε2C2 + ε4C4 − ε6C6

〈ζ〉

I The expression of Ci are given by

C0 = 〈ζ−1〉−1

C2 =
〈ζ ′2/ζ〉
3〈ζ−1〉2

C4 =
〈ζ ′2/ζ〉2
9〈ζ−1〉3 +

4〈ζ ′4/ζ〉+ 〈ζ ′′2ζ〉
45〈ζ−1〉2

C6 =
〈ζ ′2/ζ〉3
9〈ζ−1〉4 +

8〈ζ ′4/ζ〉+ 2〈ζ ′′2ζ〉
45〈ζ−1〉3

〈ζ ′2/ζ〉2
3

+ · · ·

· · ·+ 44〈ζ ′6/ζ〉+ 5〈ζ2ζ ′′3〉+ 45〈ζ ′3ζ ′′2〉+ 2〈ζ3ζ ′′′2〉
945〈ζ−1〉2
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Different regimes of dispersion : narrow to wide channels

Numerical results : validity of the perturbative expansion
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I Improvements of De at each order.
I What happens for wide channels (ε� 1) ?
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Different regimes of dispersion : narrow to wide channels

Entropic trapping of particles in wide channels

x
h(x)a

L

I Particles trapped in regions |y| > a

x2(t) ≥ 2D0t
′

I t′ is the time spend in |y| < a region.

I The long-time effective diffusivity is bounded

1 ≥ De

D0
≥ t′

t
=

a

〈h〉

I For a� L, the lower bound becomes exact.

I Presence of a boundary layer at y = a.
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Different regimes of dispersion : narrow to wide channels

Finding the finite corrections in the wide channel regime

Φ = L/2

Φ = −L/2

(a)
ε = 0.3

(b)

I Conformal mapping G(z) = exp[−iπ(z − ia)]

I Long-time effective diffusivity, with a correction O(1/ε)

De

D0
=

a

〈h〉

(
1 +

ln 2

πε

)

I Identification of a universal constant ln 2/π.
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Different regimes of dispersion : narrow to wide channels

Finding the finite corrections in the wide channel regime

Φ = L/2

Φ = −L/2

(a)
ε = 0.6

(b)

I Conformal mapping G(z) = exp[−iπ(z − ia)]

I Long-time effective diffusivity, with a correction O(1/ε)

De

D0
=

a

〈h〉

(
1 +

ln 2

πε

)

I Identification of a universal constant ln 2/π.
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Different regimes of dispersion : narrow to wide channels

Finding the finite corrections in the wide channel regime

Φ = L/2

Φ = −L/2

(a)
ε = 3.0

(b)

I Conformal mapping G(z) = exp[−iπ(z − ia)]

I Long-time effective diffusivity, with a correction O(1/ε)

De

D0
=

a

〈h〉

(
1 +

ln 2

πε

)

I Identification of a universal constant ln 2/π.
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Different regimes of dispersion : narrow to wide channels

Finding the finite corrections in the wide channel regime
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Different regimes of dispersion : narrow to wide channels

Intermediate regime of dispersion

I Padé approximant with ε� 1 and ε� 1 expansions

De

D0
=

1

〈h〉〈h−1〉
1 + a1ε+ a2ε

2 + · · ·
1 + b1ε+ b2ε2 + · · ·
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I The Padé approximant fit well the numerical data for smooth channels.
I What happens in the large-ξ limit, in presence of small openings ?
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Different regimes of dispersion : narrow to wide channels

Narrow escape regime for small openings

a

τ

I τ : FPT to reach a small opening

I Long-time effective diffusivity

De

D0
=

L2

2D0τ
=

L

〈h〉
π

2 ln(K/ε)

I Expression valid for ε� 1 and ξ � 1.
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Different regimes of dispersion : narrow to wide channels

Classification of dispersion regimes

Slowly Varying
Channels

Narrow
Escape

Wide
Channels

Slowly Varying
Channels

Narrow
Escape

Wide
Channels

x
h(x)

H

a

L

x

h(x)

H

a

L
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Different regimes of dispersion : narrow to wide channels

Classification of dispersion regimes

ε = a/L

ξ
=
H
/a

Narrow Escape
De

D0
' L
〈h〉

π
2 ln(K/ε)

Slowly Varying
Channels
De

D0
' 1
〈h〉〈h−1〉

Narrow Escape
Funnel

Wide Channels
De

D0
' a
〈h〉
(
1 + ln 2

πε

)

De

D0
' 1

ε √
ξ

=
1

ε
=

1

ε = a/L

ξ
=
H
/a

Narrow Escape
De

D0
' L
〈h〉

π
2 ln(K/ε)

Slowly Varying
Channels
De

D0
' 1
〈h〉〈h−1〉

Wide Channels
De

D0
' a
〈h〉
(
1 + ln 2

πε

)

De

D0
' 1

εξ
=

1 ε
=

1

x
h(x)

H

a

L

x

h(x)

H

a

L
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Special case of narrow discontinuous channels

Failure of perturbation theory (h′(x) =∞)

h+

h−

h(x)

x

I Discontinuity at x = 0. Perturbative solution valid at x 6= 0.
I Boundary layer at the discontinuity.

I Conformal mapping z = H(Ω) via a Schwarz-Christoffel transformation.
I Long-time effective diffusivity, with a correction O(ε) instead of O(ε2) !

De

D0
=

1

〈h〉〈h−1〉

(
1− ε

π〈ζ−1〉
∑

i

γ(νi)

)

I The discontinuity plays the role of a local trap.
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Special case of narrow discontinuous channels

Failure of perturbation theory (h′(x) =∞)

H(1) = ih+

H(k) = ih−

0 1 k

H(Ω)
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Special case of narrow discontinuous channels

Three kinds of discontinuities

h+

h−

h(x)

x h0 = h+

h−

γ(ν) =
1 + ν2

ν
ln

1 + ν

1− ν − 2 ln
4ν

1− ν2

ν = h+/h− ≤ 1

h0

h− = h+

h(x)

x h0

h− = h+

γ(ν) = −4 ln sin
πν

2

ν = h0/h− ≤ 1

h0

h−
h+

h(x)

x h0

h+

h−

γ(ν, ν̃) =
1 + (νν̃)2

νν̃
ln
ν + ν̃

ν − ν̃−2 ln
4νν̃

ν2 − ν̃2

ν and ν̃ functions of h0/h− and h0/h+.
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Conclusion

What we have characterized

I Exact PDEs to get the effective diffusivity, simplified by the use of
complex analysis in two dimensions through a compact formalism.

I Fick-Jacobs approximation revisited and wide channels limit
characterized by a universal constant.

I Classification of all regimes of dispersion for periodic smooth-neck and
sharp-neck channels.

I Discontinuities associated to an effective local trapping.

I The dispersion of particles is controlled by the geometry of the channel.

Geometry controlled dispersion in periodic corrugated channels, EPL 118, 40004 (2017).

Dispersion in two dimensional channels - the Fick-Jacobs approximation revisited, J. Stat. Mech.

(2017), 123205.

Dispersion in two dimensional periodic channels with discontinuous profiles, in preparation.
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Conclusion

What is the next step ?

I What happens with a longitudinal force ? In presence of hydrodynamics
flows for example.

I What happens with a normal force ? In presence of gravity for example.

I How to characterize the dispersion in moving channels h(x, t) ? For
biological systems for example.

I Is the complex analysis possible in 3-dimensions ?
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Thank you for your attention !
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