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We consider the off-lattice two-dimensional q-state active clock model (ACM) as a natural dis-
cretization of the Vicsek model (VM) describing flocking. The ACM consists of particles able to move
in the plane in a discrete set of q equidistant angular directions, as in the active Potts model (APM),
with an alignment interaction inspired by the ferromagnetic equilibrium clock model. We find that
for a small number of directions, the flocking transition of the ACM has the same phenomenology
as the APM, including macrophase separation and reorientation transition. For a larger number of
directions, the flocking transition in the ACM becomes equivalent to the one of the VM and displays
microphase separation and only transverse bands, i.e. no re-orientation transition. Concomitantly
also the transition of the q → ∞ limit of the ACM, the active XY model (AXYM), is in the same
universality class as the VM. We also construct a coarse-grained hydrodynamic description for the
ACM and AXYM akin to the VM.

Active matter consists of particles that consume en-
ergy and convert it, for instance, into directed motion.
Being manifestly out of equilibrium active matter sys-
tems display novel many-particle effects or collective phe-
nomena, like flocking, motility induced phase separation,
giant number fluctuations, active turbulence etc. New
models have been developed in the last two decades to
understand and unravel the physical principles govern-
ing active matter systems [1]. The paradigmatic model
for collective motion of animal groups, like bird flocks,
buffalo herds, fish schools, is the Vicsek model (VM) [2],
in which particles moving with constant velocity align
their direction of motion with the average direction of
their neighbors. At low noise and large density the VM
displays a flocking transition to collective motion in a
common direction. Subsequent studies showed that the
way in which noise and disorder are introduced into the
system [3, 4], range and type of the interactions [5–8] and
alignment rules [9, 10] influence the characteristics of pat-
tern formation and the type of phase transition occurring
in Vicsek-like models.

Even the nature of the flocking transition of the origi-
nal VM was debated for a long time: originally thought
to be continuous [2] recent studies showed that it is dis-
continuous, reminiscent of a liquid-gas transition rather
than a order-disorder transition [11]. In contrast to con-
ventional first order phase transition scenarios, in which
the system phase-separates macroscopically into a liquid
and a gas phase in the coexistence region, the VM mi-
crophase separates into liquid bands of finite width mov-
ing coherently through the gas phase due to giant density
fluctuations that break large liquid domains and arrest
band coarsening [11]. Remarkably, such a microphase
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separation is absent in discretized versions of flocking
models: the active Ising model (AIM) [12], the q-state ac-
tive Potts model (APM) [13], and an earlier version of the
APM with volume exclusion effects [5] which shows sur-
prisingly rich variety of self-organized patterns, all mani-
fest macrophase separation in the coexistence region with
only one liquid band moving in a gas background in a
large aspect ratio rectangular geometry. In contrast to
the VM, the APM displays additionally a reorientation
transition from transversally moving bands for low par-
ticle velocities to longitudinally moving bands for high
particles velocities [13].

A natural discretization of the VM (in 2d) is the 2d
q-state active clock model (ACM), consisting of particles
able to move in the plane in a discrete set of q equidis-
tant angular directions, as in the AIM or APM, with an
alignment interaction inspired by the ferromagnetic equi-
librium clock model [14], approaching the ferromagnetic
XY model in the limit q → ∞ [15]. Three questions
arise in this context: 1) What is the nature of a puta-
tive flocking transition in the ACM for different values
of the number of states q, regarding the fact that the
equilibrium clock model has continuous BKT transition
at a temperature TBKT into a quasi-long range ordered
phase and for q > 4 another transition at a temperature
TLRO < TBKT into a long-range ordered phase? [16] 2) If
the transition is first order, what are the characteristics
of the coexistence region: microphase separation as in the
VM or macrophase separation as in the AIM and APM?
Do longitudinally moving bands exist? 3) Is the q → ∞
limit of the ACM, the active XY model (AXYM) equiva-
lent to the VM or does it remain macrophase separating
as for finite q.

In this letter we will answer these question and will
show that for a small number of states, the flocking tran-
sition of the ACM has the same phenomenology as the
APM [13], including macrophase separation and reori-
entation transition. For a larger number of states, the
flocking transition in the ACM becomes equivalent to the
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one of the VM and displays microphase separation and
only transverse bands, i.e. no re-orientation transition.
Concomitantly also the transition of the AXYM is in the
same universality class as the one of the VM. The letter
is organized as follows: first we define the ACM in detail,
then we present our numerical results and our hydrody-
namic theory, and finally we discuss the implication of
our findings.

Model. – The 2d q-state ACM consists of N particles
moving in a off-lattice rectangular domain of size Lx ×
Ly with periodic boundary conditions and with average
particle density ρ0 = N/LxLy. Since no mutual exclusion
among the particles are considered, ρ0 can assume values
larger than 1. Each particle carries a clock degree of
freedom or angle θ ∈ {0, 2π/q, 4π/q, · · · , 2(q − 1)π/q},
which also defines its preferred direction of motion in a
biased diffusion. It can either jump to a new position or
flip its angle. The hopping rate of a particle in state θ
in the (discrete) direction φ is Whop = D[1 − ε/(q − 1)]
for φ 6= θ and Whop = D(1 + ε) for φ = θ, where D > 0
is the diffusion constant and ε ∈ [0, q − 1] is the bias, or
“velocity". Note that the total hopping rate is W tot

hop =
qD and that ε = 0 corresponds to unbiased diffusion
and ε = q − 1 to ballistic motion in the direction of the
clock angle. If the hopping angle is φ and we denote the
position of the ith particle at time t by xi(t), then its
position in the next time step is xi(t) + eφ, where eφ
is the unit vector in φ-direction. The flipping rate from
θi = θ to θi = θ′ is derived via detailed balance from a
local clock Hamiltonian

Hi = − J

2ρi

∑
k 6=l,k,l∈Ni

cos(θk − θl) , (1)

where J is the ferromagnetic coupling constant and ρi
is the number of particles within its neighborhood Ni =
{j with |xi − xj | 6 1}:

Wflip = γ exp

{
βJ

ρi
[mi · (eθ′ − eθ) + 1− cos(θ − θ′)]

}
,

(2)
where mi =

∑
j∈Ni

(cos θj , sin θj) is the local magne-
tization and γ is a constant. The origin of the term
1− cos(θ−θ′) in Eq. (2) is the absence of self-interaction
in the clock Hamiltonian in Eq. (1) (see [17] for a detailed
explanation). Although phenomenologically ACM is very
similar to the APM [13], the Kronecker delta “Potts” in-
teraction in the APM has been replaced by the cosine
“clock” interaction in the ACM motivated by the q →∞
limit and whether one recovers the VM in that limit and
here the ACM is clearly better suited than the APM.

For q = 4 and 6, one can define the ACM on square and
triangular lattices, respectively, and identify the q differ-
ent directions of motion to the q nearest neighbors. We
analyzed these lattice versions, too, and obtained qualita-
tively identical results as those reported below, see [17],
but here we restrict ourselves to the off-lattice version
which allows a straightforward q →∞ limit (AXYM) and

is also closer to the original VM. In the limit q →∞ the
rescaled quantitiesD = qD and ε = ε/(q−1) have to stay
finite and the angles become continuous with θ ∈ [0, 2π].
The jump rate of a particle in state θ in the (continuous)
direction φ becomes Whop = D(1− ε) for φ ∈ [0, 2π] and
Whop = Dε for φ = θ.

We performed Monte Carlo simulations of the q-state
ACM and the AXYM, which evolve in discrete time steps
of length ∆t. In each time-step N (=number of particles)
single particle updates are performed, one of which con-
sists in choosing randomly a particle which then either
updates its spin state to θ′ 6= θ chosen randomly with
probability pflip = Wflip∆t, or hops to one of the q direc-
tions with probability phop = D∆t: in a random direc-
tion with probability (1−ε)phop or in the direction θ with
probability εphop. The probability that nothing happens
during this single particle update is pwait = 1−pflip−phop.
An expression for ∆t can be chosen to minimize pwait:
∆t = [D+ exp(2βJ)]−1. This is a hybrid dynamics com-
bining Monte Carlo and a real-time dynamics previously
used in the simulations of the AIM [12] and the APM [13].
Without any loss of generality, we can take D = 1, J = 1
and γ = 1.

We consider mainly a rectangular domain with a large
aspect ratio with Lx = 400 and Ly = 50 for the com-
putation of the phase diagram and other quantities.
Lx = 800 with varying Ly are considered for the snap-
shots presented. Simulations are performed for three
control parameters: the noise is regulated by β = 1/T ,
ρ0 = N/LxLy defines the average particle density, and
ε, the self-propulsion parameter, dictates the effective
velocity of the particles. The initial homogeneous sys-
tem is prepared by assigning random initial position
(xi, yi) and orientation θi to each particle and then we let
the system evolve under various control parameters for
teq = 105∆t to reach the steady-state. Following this,
measurements are carried out with a maximum simula-
tion time tmax = 20teq.
Phase diagrams and coexistence region. – In

Fig. 1(a) and Fig. 1(b), we show stationary density pro-
files for the q = 4-state ACM on a 400 × 50 rectangular
domain for fixed β = 2 and ρ0 = 1.5 but for different
bias: (a) ε = 0.2 and (b) ε = 0.8. As observed be-
fore in the VM [2, 11], the AIM [12], and the q-state
APM [13], the transition from a homogeneous gas phase
to a polar liquid phase occurs through a liquid-gas coex-
istence phase, where a single band of polar liquid prop-
agates on a disordered gaseous background. Akin to the
4-state APM [13], the band moves (a) transversally at
small bias (velocity) ε = 0.2 and (b) longitudinal with
respect to the band direction at larger bias ε = 0.8. The
coexistence phase in both figures shows a fully phase-
separated density profile with a single macroscopic liquid
domain as observed previously in the context of lattice
flocking models [12, 13]. In Fig. 1(c) and Fig. 1(d), we
display the temperature-density (T -ρ0) phase diagram for
ε = 0.5 and the velocity-density (ε-ρ0) phase diagram for
β = 2, respectively. The liquid and gas binodals ρliq
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(a) q = 4, β = 2, ε- = 0.2, ρ0 = 1.5
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FIG. 1: (Color online) (a)–(b) Stationary density profiles for
q = 4, β = 2 and ρ0 = 1.5 in a 400 × 50 domain showing
the bulk phase-separation and reorientation transition from
(a) transverse band motion for ε = 0.2 to (b) longitudinal
band motion for ε = 0.8. The colorbar represents the particle
density. (c) Temperature-density (T -ρ0) phase diagram for
ε = 0.5, and (d) Velocity-density (ε-ρ0) phase diagram for
β = 2 of the q = 4-state ACM. The reorientation transition
happens at β = 1.9 and ε = 0.32, respectively.

and ρgas, which segregate the gas-liquid (G+L) coexis-
tence phase from the two homogeneous phases, liquid
(L) and gas (G), are extracted from the time-averaged
phase-separated density profiles. Reported for the first
time in the context of the APM [13], we observe a simi-
lar reorientation transition of the coexistence phase from
transverse band motion at low velocities and high tem-
peratures to longitudinal lane formation at high velocities
and low temperatures for q = 4. The physical origin of
this reorientation transition, as argued in Ref. [13] with
equivalent hopping rules, is the decrease of the transverse
diffusion constant for large velocities, stabilizing the lon-
gitudinal lane formation. The reorientation transition
occurs at β = 1.9 (c) and ε = 0.32 (d), where the black
dotted lines delimit the two co-existing phase domains
which are further marked by two distinct colors: grey
for longitudinal lane motion and yellow for transverse
band motion. We have obtained similar results from the
numerical simulations of the 4-state ACM on a square
lattice [17].

In Fig. 2(a) and Fig. 2(b), we show stationary density
profiles for the q = 8-state ACM on a 800 × 20 rectan-
gular domain for β = 2, ε = 0.9 and (a) ρ0 = 1.5 and
(b) ρ0 = 2. A microphase separation of the coexistence
region, where periodically arranged ordered liquid bands
move in the same direction in a gaseous background, is
observed. The microphase-separated traveling bands are
transverse in nature as observed first in the VM [2]. In a
microphase separation, the traveling bands are not fully
phase-separated and as established in Ref. [11], one cru-
cial characteristic of this microphase separation is that
the band number nb increases with the density ρ0 as ob-
served in Figs. 2(a)-(b). Time-averaged density profiles

(b) q = 8, β = 2, ε- = 0.9, ρ0 = 2
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FIG. 2: (Color online) (a)–(b) Stationary density profiles for
the q = 8-state ACM, β = 2 and ε = 0.9 in a 800 × 20
domain showing transversely moving microphase-separated
bands for (a) ρ0 = 1.5 and (b) ρ0 = 2. The colorbar rep-
resents the particle density. (c) Time-averaged density pro-
files for ρ0 ∈ {1.5, 1.75} defining the two binodals ρliq and
ρgas. (d) Velocity-density (ε-ρ0) phase diagrams for q = 8 and
q = 16-state ACM obtained for β = 2 showing only transverse
band motion.

of the liquid-gas coexistence phase are shown in Fig. 2(c)
which suggest that the width of the polar liquid band
does not increase significantly with the average density
ρ0 (see [17] for the algorithm which has been used to ob-
tain the time-averaged profiles). It is well known that
the band width does not affect the liquid (ρliq) and the
gas (ρgas) binodals and we use this property to extract
the relevant phase diagrams. In Fig. 2(d), we represent
the velocity-density (ε-ρ0) phase diagrams for β = 2 and
for q = 8 and q = 16-state ACM. The two diagrams
are very similar both qualitatively and quantitatively and
implying a similar physical picture of the q-state ACM
for q > 8. The corresponding coexistence domain of the
q = 8 and 16-state ACM is completely described by trans-
versely traveling microphase separated bands. Although
a reorientation transition occurs for q = 6-state ACM
when simulated on a triangular lattice [17], we do not
observe any reorientation transition for off-lattice simu-
lations for q > 6 at large bias ε as observed for q = 4.

In Fig. 3(a) and Fig. 3(b), we present the stationary
density profiles in the coexistence phase of the AXYM
(i.e. for q = ∞) on a 800 × 20 rectangular domain and
for β = 2, ε = 0.9 and (a) ρ0 = 1.5 and (b) ρ0 = 2.
The AXYM and VM possess the same O(2) rotational
symmetry but differ in their flipping and hopping rules.
Nevertheless, we observe a microphase separation in the
coexistence regime like in the VM [11] where the trav-
eling bands are moving in the same direction and nb is
increasing with ρ0. The temperature-density (T -ρ0) and
the velocity-density (ε-ρ0) phase diagrams are shown in
Fig. 3(c) for ε = 0.5 and Fig. 3(d) for β = 2, respectively.
We do not observe the reorientation transition akin to the
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(a) AXY, β = 2, ε- = 0.9, ρ0 = 1.5
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 0

 1

 2

 3

 4

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6

(c)

AXY, ε-  = 0.5

G G + L L

transverse
microphase

T
 (
β

-1
)

ρ0

ρliq
ρgas

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

(d)

AXY, β = 2

G G + L L

transverse
microphase

ε-

ρ0

ρliq
ρgas

FIG. 3: (Color online) (a)–(b) Stationary density profiles for
the AXYM, β = 2 and ε = 0.9 in a 800× 20 domain showing
transversely moving microphase-separated bands for (a) ρ0 =
1.5 and (b) ρ0 = 2. The colorbar represents the particle
density. (c) Temperature-density (T -ρ0) phase diagram for
ε = 0.5, and (d) Velocity-density (ε-ρ0) phase diagram for
β = 2 for the AXYM showing only transverse band motion.

observation made for q = 8 and q = 16-state ACM. The
velocity-density (ε-ρ0) phase diagram is also identical to
Fig. 2(d) both qualitatively and quantitatively and thus
minimizing the statistical errors in the calculations of the
binodals, these three diagrams can be merged in a single
diagram which signifies that the system behaves similarly
for large number of directions or large q values. More-
over, for the q-state ACM and the AXYM we recover
the characteristic velocity-density (ε-ρ0) phase diagram
observed in other discrete flocking models [12, 13]. How-
ever, the nature of the ε̄→ 0 transition of the AXYM is
different from the VM. The density at which the gas and
liquid binodals intersect at ε = 0 is finite (ρ∗ = 1.95) for
the AXYM whereas it is infinite for the VM, as argued
in [11].
Zero activity limit (ε̄ = 0). – This limit is de-

noted as the Brownian clock model, reminiscent of the
Brownian Potts model studied in [18]. We observe an
order-disorder phase transition without a coexistence re-
gion, as observed for the AIM [12] and the APM [13].
In Fig. 4, we show the distribution of the order pa-
rameter m = (mx,my) with mx =

∑N
i=1 cos θi and

my =
∑N
i=1 sin θi in the ordered phase for β = 2, ε̄ = 0,

and ρ0 = 3 simulated on a square domain of system
size L = 50 and averaged over time and several initial
configurations. In Fig. 4(a) and (b), we observe a well
defined long-range ordered phase (LRO) for q = 4 and
q = 5, respectively, where the distributions manifest q
isolated spots (pinned orientations) corresponding to the
q-fold degeneracy of the ordered liquid phase with equal
probability. In Fig. 4(c)–(f), one observes for q > 6,
ringlike distributions (unpinned orientations) signifying
the Kosterlitz-Thouless (KT) type phase or the quasi-
long range ordered (QLRO) phase, where spin waves and
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FIG. 4: (color online) Zero-activity limit of the order param-
eter distributions of the q-state ACM and AXYM (q → ∞)
in the liquid phase. Parameters: L = 50, β = 2, ε̄ = 0, and
ρ0 = 3.

vortices arrange the spin vectors. For discrete q values,
a LRO phase can be observed at large densities [17] or
small temperatures, which is not the case for the AXYM.

In the AXYM, particles can diffuse along any random
direction with hopping rate D̄, whereas, the VM reduces
to the two-dimensional XY model at the zero velocity
limit (with immobile particles). Although it has been
shown for the Brownian Potts model [18] that diffusion
can change the nature of transition, the diffusive motion
of the particles in the AXYM do not change the structure
of the corresponding field theory compared to non-motile
particles in the VM. Therefore, the Mermin-Wagner the-
orem is still applicable even though this system is driven
out of equilibrium and the ordered phase we observe is
QLRO in nature, akin to the XY model in two-dimension.
The problem of diffusively moving spins, along with simi-
lar arguments, has also been studied explicitly in Ref. [19]
in the context of active phase oscillators with O(2) sym-
metry, where QLRO is reported for normal diffusion of
oscillators whereas, super-diffusive motion is needed in
order to obtain long-range order in two dimensions.
Number fluctuations. – In Fig. 5(a)–(b), we show

respectively the number fluctuations ∆n2 = 〈n2〉 − 〈n〉2
and the magnetization fluctuations ∆m2 = 〈m2〉 − 〈m〉2
for various q values against the average particle number
〈n〉. n andm are respectively the number of particles and
the magnetization in boxes of different sizes ` included in
a 400×400 domain (with ` 6 200), with 〈n〉 = ρ0`

2. The
data are for the liquid phase where β = 2, ε = 0.9, and
ρ0 = 6. As shown in Table I, both the fluctuations be-
have like 〈n〉ξ with the fluctuation exponent ξ ' ξn ' ξm
increasing with q, from ξ ' 1 for q = 4 to ξ ' 1.65
for large q (and saturates for q > 8). Consequently the
number and magnetization fluctuations show a transi-
tion from uniform fluctuations for small q to giant fluc-
tuations at larger q as they have been observed in the
VM [11]. Although the existence of giant number fluc-
tuations (GNF) were shown in Vicsek-like self-propelled
particle models [6, 7], the connection between GNF and
micro-/macro- phase separation was first hypothesized
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FIG. 5: (Color online) (a)–(b) Number fluctuations ∆n2 =
〈n2〉 − 〈n〉2 and magnetization fluctuations ∆m2 = 〈m2〉 −
〈m〉2 versus average particle number 〈n〉 for several q values
in a 400 × 400 domain. (c) Number fluctuations ∆n2 vs 〈n〉
as a function of various system sizes for q = 7. (d) Effective
exponent ξeff for the data plotted in (c). Parameters: β = 2,
ε̄ = 0.9, and ρ0 = 6.

in Ref. [11] in the context of VM where it has been ar-
gued that GNF (ξn ' 1.6) break large bulk liquid do-
mains and consequently produce smectic like microphase
state in the coexistence regime whereas the system un-
dergoes bulk phase separation when the density fluctu-
ations are normal (ξn ' 1) [12]. In the ACM therefore,
these GNF for large q might be responsible for the mi-
crophase separation in the coexistence regime as shown
in Fig. 2(a)–(b) and Fig. 3(a)–(b) for q = 8 and q = ∞,
respectively. Nevertheless one should stress that a causal
relation between the existence of GNF in the ordered
phase and the existence of micro-phase separation in the
coexistence phase, as conjectured in [11], is still hypo-
thetical and remains an interesting open question. A
comparison between Fig. 5(a) and Fig. 5(b) clearly re-
veals that GNF correspond to giant magnetization fluc-
tuations or phase fluctuations which physically signifies
weaker phase-ordering, and uniform number fluctuations
correspond to smaller magnetization fluctuations which
physically signifies stronger phase-ordering.

The finite size effect on the number fluctuations for
q = 7 is shown in Fig. 5(c) where the data can be fitted to
two different power-law regimes (consider the largest sys-
tem size L = 800) and one can extract: (i) an exponent of
1.56 in the interval [102, 103] and (ii) an exponent of 1.17
in the interval [104, 105]. These exponents along with the
exponents tabulated in Table I have been obtained by fit-
ting the data to a power-law and since what one obtains

q 4 5 6 7 8 16 ∞
ξn 1.04 1.08 1.36 1.56 1.62 1.62 1.65

ξm 1.06 1.09 1.37 1.57 1.63 1.62 1.65

TABLE I: Number fluctuation exponents ξn and magnetiza-
tion fluctuation exponent ξm for several values of q, reported
from Fig. 5. The typical error on the fluctuation exponents is
0.01.

depends on the x-range to which one restricts the fits,
we have a look at the log-log slope or the correspond-
ing effective exponent ξeff = d[ln(∆n2)]/d[ln〈n〉] plotted
in Fig. 5(d) (see [17] for the effective exponents corre-
sponding to Fig. 5(a)–(b)). The plot shows a “plateau”
around the first exponent ξ ' 1.56 but we observe no
such “plateau” around the second exponent ξ ' 1.17.
Therefore, on the basis of our data, even for the largest
system size, one cannot predict an asymptotic value of
the effective exponent which might suggests a crossover
from giant to conventional number fluctuations. Note
that ξeff must decrease with increasing 〈n〉 when 〈n〉 ap-
proaches the total number of particles in the system and
becomes smaller than 1 due to the finite-size cut-off at
〈n〉 = N = ρ0L

2, where ∆n2 vanishes.

Hydrodynamic description. – Next, we derive the
main equations for the hydrodynamic continuum theory.
From the microscopic hopping and flipping rates of the
q-state ACM, we derive the master equation for the prob-
ability density function n(x, θ; t) for a particle to be at
the position x and in the spin-state θ at the time [17].
We only keep the first-order terms in the |mi| � ρi ex-
pansion in the flipping rate (2). In the large system size
limit L� 1, the hydrodynamic equation can be derived
for the density ρ(x; t) =

∫
dθn(x, θ; t) and the magneti-

zation m(x; t) =
∫
dθeθn(x, θ; t). Assuming the magne-

tization is a Gaussian variable with variance proportional
to ρξ, as shown in Fig. 5, we obtain the equations [17]:

∂tρ = D0∇2ρ+
v

4
∇ · (∇ ·Q)− v∇ ·m, (3)

∂tm = D0∇2m +
v

8

(
∂xx − ∂yy 2∂xy

2∂xy −∂xx + ∂yy

)
m

−v
2

(∇ρ+∇ ·Q) + γ0

[
βJ − 1− rρα − κm

2

ρ2

]
m, (4)

with the diffusion constantD0 = D/4, the self-propulsion
velocity v = Dε, the ferromagnetic interaction strength
γ0 = qγ/(q − 1), κ = (βJ)2(7 − 3βJ)/8, α = ξ − 2, and
the nematic tensor

Q =
βJ

2ρ

(
m2
x −m2

y 2mxmy

2mxmy −m2
x +m2

y

)
. (5)

Note for r = 0, the simple mean-field theory can be recov-
ered by neglecting the number and magnetization fluctu-
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ations. As shown in previous studies for the AIM and the
APM [12, 13], these mean-field equations do not predict
stable phase-separated profiles and will only give the triv-
ial homogeneous solution. We note that Eqs. (3-4) allow
two homogeneous solutions with ρ = ρ0 corresponding
to the gas phase: m = 0, and the polar liquid phase:
m2 = ρ2

0(βJ − 1− rρα0 )/κ. The order-disorder transition
at ε = 0 occurs at a density ρ∗ = [(βJ − 1)/r]1/α.

The Eqs. (3) and (4) are equivalent to the hydrody-
namic equations derived for the VM [11, 20], although
the second term of the right hand side of both equations
is absent due to the biased diffusion present in the model.
Applying the conclusions made in Ref. [11] to our hydro-
dynamic equations, we are not able to conclude when
a macrophase or a microphase separation is observed
in the coexistence phase. Adding a zero-mean vectorial
Gaussian white noise of variance ρα(r − κm2/ρξ) to the
Eq. (4) would be a possibility to scrutinize the stability
of a macrophase or a microphase separation in the coex-
istence phase, as demonstrated for the VM in [11]. More-
over, the study of the existence of reorientation transition
is feasible with Eqs. (3) and (4), as already done for the
APM [13].

Conclusion. – The nature of the flocking transition
in the q-state ACM and the AXYM is a liquid-gas phase
transition for all values of the number of states q, similar
to the VM [2, 11], the AIM [12] and the APM [5, 13],
with a coexistence phase delimiting the gas and liquid
homogeneous phases for ε̄ > 0. The coexistence phase
shows a macrophase separation for small directions or
q values as in the AIM [12], the APM [5, 13] and mi-
crophase separation for large q values as in the VM. Lon-
gitudinally moving bands exist only when the coexistence
phase is macrophase-separated, which implies that a re-
orientation transition as in the APM [13] is absent for the
ACM with large number of states and thus also for the
AXYM, as it is for the VM. These results are supported
by the number and magnetization fluctuations. Giant
fluctuations observed for large q values do not allow bulk
phase separation and break large liquid domains into nar-
row periodic traveling bands and also restrict those bands
from further coarsening, resulting in microphase separa-
tion.

Hence the discretization of the directions of motion in
the VM as in the ACM will not change the character-
istics of the VM flocking transition as long as the num-
ber of directions is sufficiently large. The main differ-
ence between the ACM and VM arises at zero-activity
limit ε̄ = 0 where the particles in the ACM can still
diffuse whereas in the VM they are immobile. For a

smaller number of directions, macrophase separation and
a re-orientation transition occurs. The hydrodynamic de-
scription that we derived for the q-state ACM is com-
patible with the hydrodynamic description for the VM
presented in Refs. [11, 20], but is inconclusive regarding
the stability of macrophase or microphase separation.

Experimental realizations of various flocking models
are manifold [21] and the small q variant of the ACM (and
APM) has been used to understand pattern formation
observed in experiments with motility assays [22]. For
experimental systems with a large number of motility
directions, the q-state ACM and the AXYM could also be
a very good candidate where larger direction changes are
penalized by smaller transition probabilities and a biased
hopping can always be performed along the direction of
motion of the particle.

When this work was finalized we became aware of a re-
lated study [23] considering a version of the ACM/AXYM
that differs in various important aspects from ours: in the
model used in [23] 1) particles live on a square lattice and
hence can only move in four different directions, 2) spin
flips (clock changes) can only happen to the previous or
next hour, 3) the hopping rules are defined differently and
are 4) projected onto the four lattice directions, which is
not fully commensurate with the spin anisotropy, and
5) the hydrodynamic theory is one for XY spins in an
anisotropy potential producing a term stabilizing LRO
for all finite q-values, which is absent in our theory. For
such a model an asymptotic macro-phase separation and
the absence of a re-orientation transition for all q < ∞
is predicted in [23]. The latter is a consequence of the
different hopping rules [13], but to numerically prove the
existence or absence of an asymptotic cross-over from
micro- to macro-phase separation for higher q-values one
would have to consider much larger system sizes than
those considered in [23] and by us and should be clarified
in a future work.

Also, an interesting problem to investigate would be
the relation between the presence of GNF in the liq-
uid phase, the nature of the coexistence phase (micro-
or macro-phase separation) and the pinned property of
the spin, equivalent to a LRO or QLRO phase as a func-
tion of various control parameters.
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I. q-STATE ACM ON DISCRETE LATTICES

A. The Model

We consider an ensemble ofN particles defined on periodic 2d lattices with Lx×Ly sites. The average particle density
in the system is ρ0 = N/(LxLy). Each particle endowed with a spin state (or clock angle) θ ∈ {0, 2π/q, 4π/q, · · · , 2(q−
1)π/q} can either flip to a different spin-state θ′ or jump to a nearest neighbour lattice site probabilistically. The
spin-state of the k-th particle on site i is denoted θki . The number of particles on site i is denoted by ρi with no
restriction on its value, and the magnetization on site i reads

mi =

ρi∑
k=1

cos θki ex +

ρi∑
k=1

sin θki ey. (S1)

The flip probabilities of the ACM are derived from a ferromagnetic Hamiltonian HACM =
∑
iHi decomposed as the

sum of local Hamiltonian Hi, taken from the standard clock model:

Hi = − J

2ρi

ρi∑
k=1

∑
l 6=k

cos(θki − θli) (S2)

where the prefactor 1/2ρi makes the Hamiltonian intensive and avoids the double counting of interactions and J is
the coupling constant between particles. When q = 2, we recover the Hamiltonian defined for the AIM. Consider now
a spin flip of a single particle on site i from state θ to state θ′. Without any loss of generality we can suppose that
the lth particle flips. Only the on-site energy is changed, leading to an energy difference between the new and the old
state:

∆H = − J
ρi

ρi∑
k=1,k 6=l

[
cos(θki − θ′)− cos(θki − θ)

]
(S3)

= − J
ρi

ρi∑
k=1,k 6=l

[
cos θki (cos θ′ − cos θ) + sin θki (sin θ′ − sin θ)

]
. (S4)

Defining the conserved quantity during the flip

µi =

ρi∑
k=1,k 6=l

cos θki ex +

ρi∑
k=1,k 6=l

sin θki ey, (S5)

we get the energy difference:

∆H = − J
ρi
µi · (eθ′ − eθ). (S6)

From the Eq. (S1), µi is linked to the magnetization on the site i before the flip mi and after the flip m′i with the
relations µi = mi − eθ = m′i − eθ′ , which lead to the energy difference:

∆H = − J
ρi

[mi · (eθ′ − eθ) + 1− cos(θ′ − θ)] , (S7)
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used in the main text. The energy difference can also be written as

∆H = − J

2ρi
(mi + m′i) · (eθ′ − eθ), (S8)

with both the magnetizations before and after the flip.
In analogy to the AIM and the APM, the transition rate is chosen to verify the detailed balance:

Wflip(θ, θ′) = γ exp(−β∆H) = γ exp

{
βJ

ρi
[mi · (eθ′ − eθ) + 1− cos(θ′ − θ)]

}
. (S9)

Moreover, each particle performs a biased diffusion on the lattice depending on the particle state θ: the hopping rate
is Whop = D(1 + ε) in the direction θ and Whop = D[1− ε/(q − 1)], otherwise.

We perform the numerical simulations with a Monte Carlo algorithm similar to the one used to analyze the active
Potts model (APM) [1] using the flip rate derived in Eq. (S9). Here we study the q = 4-state ACM and the q = 6-
state ACM on a 2d square lattice and 2d triangular lattice, respectively. The time is discretized in small time units
∆t = [qD + exp(2βJ)]−1 where the time increment is defined as ∆t/N , N being the total number of particles. At
each ∆t/N , a randomly chosen particle either flips its state from θ to θ′ with probability Wflip(θ, θ′)∆t or hops to a
nearest neighbor with probability Whop∆t.

B. Numerical Results

Now, we will present numerical results from our simulations of the 4-state ACM. Simulations are performed on a
100 × 100 square lattice using three control parameters: the temperature T = β−1, the average particle density ρ0,
and the bias ε.
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FIG. S1: (color online) Three phases of the 4-state ACM for ε = 0.9, (a) disordered gas for β = 1.2, ρ0 = 2, (b) liquid-gas
co-existence for β = 2, ρ0 = 3.5, and (c) polar liquid for β = 2.3, ρ0 = 5. (d) Density field snapshot corresponding to (b).

The three typical phases of the ACM are shown in Fig. S1 for ε = 0.9. A disordered gaseous phase at high
temperature and low density (β = 1.2, ρ0 = 2) in Fig. S1(a) are followed by a liquid-gas co-existence phase in
Fig. S1(b) for intermediate temperature and density (β = 2, ρ0 = 3.5) and a polar liquid phase in Fig. S1(c) at
low temperature and high density (β = 2.3, ρ0 = 5). In Fig. S1(d), we represent the corresponding snapshot of
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Fig. S1(b) where a fully phase-separated polar liquid band is shown traveling transversely on a gaseous background.
All the profiles presented in Fig. S1(a–c) are averaged over space and time and the two homogeneous phases, gas and
liquid, are defined respectively by the average magnetization where for a gas phase 〈m〉 ≈ 0 and for the liquid phase,
〈m〉 ≈ m0 6= 0.
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FIG. S2: (color online) Segregated (a) density and (b) magnetization profiles with increasing initial ρ0 are shown for β = 2 and
ε = 2.4.

Phase-separated density and magnetization profiles (averaged along the y-axis and over time) of the liquid-gas
coexistence phase are shown in Fig. S2(a) and Fig. S2(b) respectively, for β = 2, ε = 2.4 and several ρ0. The width of
the polar liquid band increases with the average density ρ0 without affecting the densities of the liquid ρliq(T, ε) and
the gaseous ρgas(T, ε) phases. A single internal state (θ = π/2) dominates each of the band, then all these bands are
longitudinal in nature.
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FIG. S3: (color online) Phase diagrams of the 4-state ACM. (a) Temperature-density (T -ρ0) phase diagram for ε = 1. The
dotted line indicates the transition density ρ∗ for ε = 0. (b) Velocity-density (ε-ρ0) diagram for β = 2.5 where the black dotted
line indicates the reorientation transition line from transverse to longitudinal particle motion.

In Fig. S3(a) we show the phase diagram of the 4-state ACM in the (T, ρ0) plane for ε = 1. The binodals ρgas and
ρliq, which are are computed from the time averaged phase separated density profiles shown in Fig. S2, segregate the
gaseous (G), gas-liquid co-existence (G + L), and liquid (L) phases. The dashed line inside the co-existence region
represents the critical densities ρ∗(β) where the liquid-gas transition occurs at ε = 0 (see Fig. S4). The (ε,ρ0) phase
diagram for a fixed temperature β = 2.5 is shown in Fig. S3(b). ρgas and ρliq merges at ρ∗(β = 2.5, ε = 0) ' 2.5
for ε = 0, which is the critical point. We have already demonstrated in Fig. S1 and Fig. S2 that the 4-state ACM
exhibits the reorientation transition of the co-existence phase and it is depicted in Fig. S3(b) through two different
color shades. In the (T, ρ0) phase diagram we do not observe the longitudinal phase as the diagram is obtained for
small particle velocity, ε = 1 for which the system manifests only transverse band motion. In the (ε,ρ0) phase diagram
the transition approximately happens at ε ' 2.3 (represented by black dotted line).
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FIG. S4: (color online) Liquid-gas phase transition in 4-state ACM for β = 2 and ε = 0. (a) Magnetization |m| versus ρ0 for
different lattice sizes L = 8, L = 12, and L = 16. (b) Binder cumulant U4 versus ρ0 for different lattice sizes L. The critical
density ρ∗(β = 2) = 2.99± 0.01 is extracted from the intersection of these curves.

The ε = 0 limit of the ACM is the purely diffusive version of the model where a continuous phase transition is
observed from a low-density homogeneous phase to a high-density ordered phase without the gas-liquid coexistence
phase as presented in Fig. S4 for β = 2. Such second order transition was also observed in the AIM [2] but in the
APM [1], the transition reported was first order in nature. In Fig. S4(a), the magnetization is plotted against ρ0 and
we observe a smooth, continuous transition from a high magnetized liquid state at larger ρ0 to a gaseous state at
smaller ρ0. The critical density of this transition, ρ∗ is calculated from the Binder cumulant U4 = 1−〈|m|4〉/3〈|m|2〉2
versus ρ0 shown in Fig. S4(b) and from the intersection of the U4 curves for different L, we quantified the critical
density ρ∗(β = 2) = 2.99± 0.01.
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FIG. S5: (color online) Steady-state density snapshots of the 6-state ACM on a triangular lattice of dimension 100 × 100
showing (a) transverse band motion for ε = 3, ρ0 = 1.5 and (b) longitudinal band motion for ε = 4.9, ρ0 = 2. β = 3. Colorbar
represents site occupation.

Additionally, we present two snapshots of the 6-state ACM on a triangular lattice in Fig. S5(a–b) as a function of
ε confirming the band to lane reorientation transition also for q = 6. In Fig. S5(a) we show the transverse motion
of the polar liquid band for ε = 3, which is constituted by particles having internal state θ = 0 whereas longitudinal
lane formation along the predominant direction of the particles with θ = π is observed for ε = 4.9. It was shown in
the context of APM [1] that this reorientation transition which was not present in other known flocking models, is
not an artefact of any algorithmic implementation and our investigation of the q-state ACM on discrete lattices has
validated that argument further.

II. HYDRODYNAMIC DESCRIPTION

Now, we will present the derivation of the hydrodynamic equations (3)-(5) presented in the main text. We define
n(x, θ; t) as the probability density for a particle to be at the position x and in the spin-state θ at the time t. The
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particle density reads

ρ(x, t) =

∫ 2π

0

dθn(x, θ; t) = ∆θ
∑
θ

n(x, θ; t) (S10)

for the AXYM and the q-state ACM with ∆θ = 2π/q, respectively. Similarly, the magnetization is defined by

m(x, t) =

∫ 2π

0

dθeθn(x, θ; t) = ∆θ
∑
θ

eθn(x, θ; t), (S11)

with eθ = (cos θ, sin θ). Note that ρ(xi, t) ≡ ρi(t) and m(xi, t) ≡ mi(t) represents the particle number and the
magnetization in the neighborhood Ni, respectively. Finally, we also define the nematic tensor as

Q(x, t) =

∫ 2π

0

dθ

(
cos 2θ sin 2θ

sin 2θ − cos 2θ

)
n(x, θ; t) = ∆θ

∑
θ

(
cos 2θ sin 2θ

sin 2θ − cos 2θ

)
n(x, θ; t) ≡

(
Q1(x, t) Q2(x, t)

Q2(x, t) −Q1(x, t)

)
,

(S12)
and we suppose that higher harmonic terms are zero.

We derive the master equation corresponding to the microscopic process with hopping rates Whop(θ, φ) and flipping
rates Wflip(θ, θ′), where θ, φ and θ′ are the state angle of the particle, the hopping angle and the angle after the flip,
respectively. It writes then as

n(x, θ; t+ dt) = n(x, θ; t)

1− dt
∑
φ

Whop(θ, φ)− dt
∑
θ′ 6=θ

Wflip(θ, θ′)

q − 1


+

∑
φ

n(x− eφ, θ; t)Whop(θ, φ) +
∑
θ′ 6=θ

n(x, θ′; t)
Wflip(θ′, θ)

q − 1

 dt. (S13)

Taking the limit dt→ 0, we get

∂n

∂t
(x) =

∑
φ

[n(x− eφ, θ)− n(x, θ)]Whop(θ, φ) +
1

q − 1

∑
θ′ 6=θ

[n(x, θ′)Wflip(θ′, θ)− n(x, θ)Wflip(θ, θ′)] ≡ Ihop + Iflip.

(S14)
We can obviously add the term θ = θ′ in Iflip. First, we calculate the expression of Ihop. Using the definition of Wflip,
we obtain

Ihop =
D(1− ε)

q

∑
φ

[n(x− eφ, θ)− n(x, θ)] +Dε [n(x− eθ, θ)− n(x, θ)] . (S15)

In the hydrodynamic limit, we show that

n(x− eφ, θ)− n(x, θ) = −eφ · ∇n(x, θ) +
1

2
(eφ · ∇)

2
n(x, θ) + · · · , (S16)

and we deduce then ∑
φ

[n(x− eφ, θ)− n(x, θ)] =
q

4
∇2n(x, θ). (S17)

The hopping term becomes

Ihop =
D(1− ε)

4
∇2n(x, θ) +

Dε

2
(eθ · ∇)

2
n(x, θ)−Dεeθ · ∇n(x, θ). (S18)
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Merging the diffusive terms together, we obtain

Ihop =
D

4
∇2n(x, θ) +

Dε

4
∇ ·
(

cos 2θ sin 2θ

sin 2θ − cos 2θ

)
∇n(x, θ)−Dεeθ · ∇n(x, θ). (S19)

Now, we calculate the flipping term Iflip. We only keep the first-order terms in the |mi| � ρi expansion. At the
leading order, we may suppose

Wflip(θ, θ′) ' γ exp

[
βJ

ρ
m · (eθ − eθ′)

]
(S20)

and the Taylor expansion gives

Wflip(θ, θ′) ' γ
[

1 +
βJ

ρ
m · (eθ − eθ′) +

1

2

(
βJ

ρ

)2

[m · (eθ − eθ′)]
2

+
1

6

(
βJ

ρ

)3

[m · (eθ − eθ′)]
3

]
. (S21)

Then, the flipping term writes

Iflip =
γ

q − 1

∑
θ′

{
[n(x, θ′)− n(x, θ)]− βJ

ρ
[m · (eθ′ − eθ)] [n(x, θ′) + n(x, θ)]

+
1

2

(
βJ

ρ

)2

[m · (eθ′ − eθ)]
2

[n(x, θ′)− n(x, θ)]− 1

6

(
βJ

ρ

)3

[m · (eθ′ − eθ)]
3

[n(x, θ′) + n(x, θ)]

}
. (S22)

The first term in Eq. (S22) writes ∑
θ′

[n(x, θ′)− n(x, θ)] =
q

2π
[ρ− 2πn] , (S23)

where we have simplified the notations: ρ ≡ ρ(x) and n ≡ n(x, θ). The second term in Eq. (S22) writes∑
θ′

[m · (eθ′ − eθ)] [n(x, θ′) + n(x, θ)] =
q

2π

[
m2 − (ρ+ 2πn) (m · eθ)

]
, (S24)

where m ≡m(x). The third term in Eq. (S22) writes∑
θ′

[m · (eθ′ − eθ)]
2

[n(x, θ′)− n(x, θ)] =
q

2π

[
1

2
m ·Qm− 2m2(m · eθ) +

1

2
(ρ− 2πn)

(
m2 + 2(m · eθ)2

)]
, (S25)

where Q ≡ Q(x). The fourth term in Eq. (S22) writes∑
θ′

[m · (eθ′ − eθ)]
3

[n(x, θ′) + n(x, θ)] = − 3q

4π

[
m ·Qm + (ρ+ 2πn)

(
m2 +

2

3
(m · eθ)2

)]
(m · eθ). (S26)

Merging all these terms together, the Eq. (S22) becomes

Iflip =
qγ

2π(q − 1)

{
[ρ− 2πn]− βJ

ρ

[
m2 − (ρ+ 2πn) (m · eθ)

]
+

1

2

(
βJ

ρ

)2 [
1

2
m ·Qm− 2m2(m · eθ) +

1

2
(ρ− 2πn)

(
m2 + 2(m · eθ)2

)]
+

1

4

(
βJ

ρ

)3 [
m ·Qm + (ρ+ 2πn)

(
m2 +

2

3
(m · eθ)2

)]
(m · eθ)

}
, (S27)
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and the hydrodynamic equation writes

∂n

∂t
=
D

4
∇2n+

Dε

4
∇ ·
(

cos 2θ sin 2θ

sin 2θ − cos 2θ

)
∇n−Dεeθ · ∇n

+
qγ

2π(q − 1)

{
[ρ− 2πn]− βJ

ρ

[
m2 − (ρ+ 2πn) (m · eθ)

]
+

1

2

(
βJ

ρ

)2 [
1

2
m ·Qm− 2m2(m · eθ) +

1

2
(ρ− 2πn)

(
m2 + 2(m · eθ)2

)]
+

1

4

(
βJ

ρ

)3 [
m ·Qm + (ρ+ 2πn)

(
m2 +

2

3
(m · eθ)2

)]
(m · eθ)

}
. (S28)

This equation for n(x, θ) depends on the integrated quantities ρ(x), m(x) and Q(x). To have closed equations, we
derive now the equations for these integrated functions.

The density ρ(x) fulfills the equation

∂tρ =
D

4
∇2ρ+

Dε

4
∇ · (∇ ·Q)−Dε∇ ·m (S29)

since
∑
θ Iflip = 0 (statement also verified from Eq. (S27)).

We now derive the equation for the magnetization m(x). First, we obtain

∆θ
∑
θ

eθIhop =
D

4
∇2m +

Dε

8

(
∂xx − ∂yy 2∂xy

2∂xy −∂xx + ∂yy

)
m− Dε

2
(∇ρ+∇ ·Q) . (S30)

Then, to calculate ∆θ
∑
θ eθIflip, we need the expressions of

∆θ
∑
θ

eθ(m · eθ) = πm, ∆θ
∑
θ

neθ(m · eθ) =
1

2
(ρ+Q)m, (S31)

∆θ
∑
θ

eθ(m · eθ)2 = 0, ∆θ
∑
θ

neθ(m · eθ)2 =
3

4
m2m, (S32)

∆θ
∑
θ

eθ(m · eθ)3 =
3π

4
m2m, ∆θ

∑
θ

neθ(m · eθ)3 =
3

8
ρm2m. (S33)

The first term in Eq. (S27) gives

∆θ
∑
θ

eθ [ρ− 2πn] = −2πm, (S34)

the second term in Eq. (S27) gives

∆θ
∑
θ

eθ
[
m2 − (ρ+ 2πn) (m · eθ)

]
= −2πρm− πQm, (S35)

the third term in Eq. (S27) gives

∆θ
∑
θ

eθ

[
1

2
m ·Qm− 2m2(m · eθ) +

1

2
(ρ− 2πn)

(
m2 + 2(m · eθ)2

)]
= −9π

2
m2m, (S36)

and the forth term in Eq. (S27) gives

∆θ
∑
θ

eθ

[
m ·Qm + (ρ+ 2πn)

(
m2 +

2

3
(m · eθ)2

)]
(m · eθ) = 3πρm2m. (S37)
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We obtain then

∆θ
∑
θ

eθIflip =
qγ

q − 1

[
(βJ − 1)− 3

2

(
βJ

2ρ

)2

(3− βJ)m2 +
βJ

2ρ
Q

]
m, (S38)

and the magnetization m(x) fulfills the equation

∂tm =
D

4
∇2m +

Dε

8

(
∂xx − ∂yy 2∂xy

2∂xy −∂xx + ∂yy

)
m− Dε

2
(∇ρ+∇ ·Q)

+
qγ

q − 1

[
(βJ − 1)− 3

2

(
βJ

2ρ

)2

(3− βJ)m2 +
βJ

2ρ
Q

]
m. (S39)

The expression of the nematic tensor Q(x) is obtained by neglecting the diffusion and drift terms. From Eq. (II), the
nematic tensor fulfills then

Q̇ =
qγ

2π(q − 1)

[
−2πQ+

βJ

ρ
∆θ
∑
θ

(
cos 2θ sin 2θ

sin 2θ − cos 2θ

)
(ρ+ 2πn)(m · eθ)

]
. (S40)

Assuming Q̇ = 0, we obtain

Q =
βJ

2ρ

(
m2
x −m2

y 2mxmy

2mxmy −m2
x +m2

y

)
. (S41)

We can deduce then

Qm =
βJ

2ρ
m2m, (S42)

and the equation for the magnetization becomes

∂tm =
D

4
∇2m +

Dε

8

(
∂xx − ∂yy 2∂xy

2∂xy −∂xx + ∂yy

)
m− Dε

2
(∇ρ+∇ ·Q)

+
qγ

q − 1

[
(βJ − 1)− 1

2

(
βJ

2ρ

)2

(7− 3βJ)m2

]
m. (S43)

The equations obtained for the density and the magnetization are not yet averaged over stochastic realizations. We
consider that the magnetization follows a Gaussian distribution such that

P (m) =
1

2πσ2
exp

[
− (m− µ)2

2σ2

]
, (S44)

where 〈m〉 = µ, 〈m2〉 = µ2 + 2σ2. We obtain then 〈m2m〉 = µ2µ + 4σ2µ, and

Q =
βJ

2ρ

(
µ2
x − µ2

y 2µxµy
2µxµy −µ2

x + µ2
y

)
. (S45)
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We have shown in the main text that σ ∝ ρξ (with 1 6 ξ 6 1.67), which gives the hydrodynamic equations:

∂t〈ρ〉 =
D

4
∇2〈ρ〉+

Dε

4
∇ · (∇ ·Q)−Dε∇ · 〈m〉, (S46)

∂t〈m〉 =
D

4
∇2〈m〉+

Dε

8

(
∂xx − ∂yy 2∂xy

2∂xy −∂xx + ∂yy

)
〈m〉 − Dε

2
(∇〈ρ〉+∇ ·Q)

+
qγ

q − 1

[
(βJ − 1− r〈ρ〉α)− 1

2

(
βJ

2〈ρ〉

)2

(7− 3βJ)〈m〉2
]
〈m〉, (S47)

Q =
βJ

2〈ρ〉

(
〈mx〉2 − 〈my〉2 2〈mx〉〈my〉

2〈mx〉〈my〉 −〈mx〉2 + 〈my〉2

)
, (S48)

with α = ξ − 2 and where r is a constant which usually depends on β. These equations are reported in main text as
Eqs. (3)-(5) where the stochastic average 〈· · · 〉 have been omitted. When r = 0, the mean-field equations are recovered,
and we can take r = 1 without any loss of generality (up to a rescaling of the density and the magnetization). We
may note that

∇ ·Q = −∇〈ρ〉〈ρ〉 ·Q+
βJ

〈ρ〉 [(〈m〉 · ∇)〈m〉 − (〈m⊥〉 · ∇)〈m⊥〉] (S49)

with m = (mx,my) and m⊥ = (−my,mx).

III. ALGORITHM TO OBTAIN THE TIME-AVERAGED PROFILES

Here, we would like to briefly discuss the algorithm that has been used to obtain the time-averaged density profiles
in Fig. 2(c). For each instantaneous density profile k at time t, we first move the center of each of the nb stripes
(nb > 1) to a fixed point x0 on the x-axis by doing a coordinate shifting (we always consider x0 = Lx/2) and perform
an averaging over these stripes at time t. We then denote the averaged density over these stripes by ρ̄k(x). We repeat
this procedure for np ' 200−300 such instantaneous profiles and finally perform a thermal averaging over np number
of ρ̄k(x) to obtain the time-averaged density profile as 〈ρ̄(x)〉 = 1

np

∑np

k=1 ρ̄k(x).

IV. ORDER PARAMETER DISTRIBUTION AS A FUNCTION OF ρ0 FOR q = 7

Distribution of the order parameter for a fixed q and several densities are shown in Fig. S6 for q = 7, β = 2 and
ε̄ = 0 where we observe all the three different phases as a function of ρ0: (a–b) homogeneous disordered phase with
uniform distribution of spins at small ρ0, where every spin points to a random direction, (c)–(e) a QLRO phase at
intermediate densities with a ringlike distribution of the order parameter and (f) a LRO phase at a sufficiently high
density where seven distinct spots correspond to the seven possible ordering states. One can notice that the spread
of the distribution around the angles allowed for the clock spins in the LRO phase of q = 7 is greater compared to
q = 4 and q = 5 in Fig. 4 and things like the system size or the higher degeneracy of the state (due to which a perfect
LRO phase like Fig. 4(a)–(b) might only be possible at a larger density) might be responsible for this. The conclusion
which we draw from Fig. S6 is that the liquid phase for discrete q values and for ε̄ = 0 shows both QLRO and LRO
at different parameter regimes, QLRO at smaller ρ0 [ρ0 > ρ∗(q)] and LRO at a larger ρ0. As shown in the context of
equilibrium q-state clock models [3], one can also expect such a scenario as a function of temperature β.
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FIG. S6: (color online) Order parameter distributions for q = 7 and several ρ0 values. Parameters: L = 50, β = 2 and ε̄ = 0.

V. EFFECTIVE EXPONENTS AS A FUNCTION OF q

In Fig. S7(a) and Fig. S7(b), we respectively present the effective exponents ξeff
n = d[ln(∆n2)]/d[ln〈n〉] and ξeff

m =
d[ln(∆m2)]/d[ln〈n〉] versus average particle number 〈n〉 (where n denotes the particle number in subsystems of linear
size `) for several q values corresponding to the number fluctuations and magnetization fluctuations shown in Fig. 4(a)-
(b). The exponents in Table 1 have been obtained by fitting the data in Fig. 4(a)–(b) to a power-law and since the
extracted exponents depend on the interval along the x-axis to which the fits are restricted, a look at the log-log slope
of the data or the effective exponent reveals more insight. The plots show “plateaus” around the extracted exponents
for the corresponding q values (see Table 1) for at most one decade of 〈n〉 and then ξeff decreases with increasing 〈n〉
when 〈n〉 approaches the total number of particles in the system and becomes smaller than 1 due to the finite-size
cut-off at 〈n〉 = N = ρ0L

2, where ∆n2 vanishes.
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FIG. S7: (color online) (a)–(b) Effective exponents ξeff
n and ξeff

m versus 〈n〉 for the data plotted in Fig. 4(a)-(b). Parameters:
β = 2, ε̄ = 0.9, and ρ0 = 6.
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