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Recently it was predicted, on the basis of a lattice gas model, that scalar active matter in a
gravitational field would rise against gravity up a confining wall or inside a thin capillary – in spite of
repulsive particle-wall interactions [Phys. Rev. Lett. 124, 048001 (2020)]. In this paper we confirm
this prediction with sedimenting active Brownian particles (ABPs) in a box numerically and elucidate
the mechanism leading to the formation of a meniscus rising above the bulk of the sedimentation
region. The height of the meniscus increases with the activity of the system, algebraically with
the Péclet number. The formation of the meniscus is determined by a stationary circular particle
current, a vortex, centered at the base of the meniscus, whose size and strength increase with the
ABP activity. The origin of these vortices can be traced back to the confinement of the ABPs
in a box: already the stationary state of ideal (non-interacting) ABPs without gravitation displays
circular currents that arrange in a highly symmetric way in the eight octants of the box. Gravitation
distorts this vortex configuration downward, leaving two major vortices at the two side walls, with
a strong downward flow along the walls. Repulsive interactions between the ABPs change this
situation only as soon as motility induced phase separation (MIPS) sets in and forms a dense,
sedimented liquid region at the bottom, which pushes the center of the vortex upwards towards the
liquid-gas interface. Self-propelled particles therefore represent an impressive realization of scalar
active matter that forms stationary particle currents being able to perform visible work against
gravity or any other external field, which we predict to be observable experimentally in active
colloids under gravitation.

I. INTRODUCTION

Active matter is constituted of self-propelled parti-
cles, like motile microorganism, bacteria, cells, animals,
or active colloids, which consume energy at small scales
and convert it into a persistent motion, driving the sys-
tem out-of-equilibrium [1–3]. This energy is often re-
distributed as thermal agitation [4], but a deeper un-
derstanding of these active energy flows is needed to ex-
tract a valuable work [5]. Experiments and numerical ev-
idence reported in recent literature show that active mat-
ter gives rise to nontrivial non-equilibrium steady states
in presence of boundaries and obstacles, such as accumu-
lation at walls [6–9], ratchet effects [10], and long-range
depletion interactions [11]. Sperm, E. Coli bacteria, or
microalgae confined to an observation chamber have been
found to strongly adhere to the walls [12–15].

Several minimal models and plausible mechanisms
have been proposed so far to explain and predict this
behavior. For example, the minimal model consists of
spherically symmetric, active Brownian particles (ABPs)
without alignment but with excluded volume interac-
tion [16, 17], belonging to the class of scalar active mat-
ter, like run-and-tumble particles [18] and active lattice
gas [19, 20]. These active particles behave like a passive
fluid with particle-particle attractive interactions, since
the collisions between them slow down the dynamics, and
therefore effectively attract each other. Consequently,
ABPs separate into low-speed (dense) and high-speed
(dilute) phases, a phenomenon called motility-induced
phase separation (MIPS) [21]. Although being a dynam-
ically arrested phase, the dense active phase seems not

to be a glassy phase [22]. This phenomenon is now well
characterized in the context of ABPs [23], also in pres-
ence of attraction between particles [24], or with polydis-
perse particles [25]. The mechanism leading to MIPS is
also responsible for the wall accumulation of active par-
ticles [6, 7], due to the adhesion of ABPs on repulsive
walls.

However, the effect of boundaries and steric interac-
tion forces on active matter in the presence of an external
force is not yet well understood. Experiments and Brow-
nian dynamics simulations have shown that a system of
dilute self-propelled particles – chemically powered col-
loids – sediment under an external gravitational field [26–
29]. The sedimentation length increases quadratically
with the swimming velocity of the ABPs, and active par-
ticles can partially swim against the gravity [27]. Ex-
act steady-state solutions have been also derived in the
context of 2d and 3d ideal active sedimentation [30, 31].
However, it is not obvious how the combination of an
external gravitational field and wall interactions might
affect the steady state of a system of interacting active
particles.

Recently, in the context of understanding the phe-
nomenon of capillary action and spontaneous imbibi-
tion of liquids in porous media, a minimal active lat-
tice gas model consisting of self-propelled hard-core par-
ticles in an external gravitational field had been intro-
duced [32]. By inserting a thin capillary tube into the
bulk-sedimented phase of the active particles, active mat-
ter exhibits capillary action even with purely repulsive
particle-wall interaction. Contrary to the notion of clas-
sical passive fluids, where phenomena such as wall wet-
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ting and capillary action originate in wall-liquid adhesive
forces and inter-molecular cohesive forces inside the liq-
uid, an active scalar fluid is able to mimic such a behav-
ior in absence of any attractive forces within the system.
However, due to the inherent out-of-equilibrium nature
of active matter [33], a quantity analogous to surface ten-
sion cannot be defined in passive equilibrium systems and
hence, the simple intuition underlying capillary action
based on the balance between gain in surface energy and
gravitational energy of the liquid column fails here. A
recent study has shown that self-propelled Janus colloids
exhibit unexpected adhesion and alignment of particles
at the wall [34], which enhance the capillary action by
enabling active particles to climb up a wall against grav-
ity.

Several studies have shown the presence of stationary
particle currents in the context of scalar active matter.
Although no alignment mechanism is present, persistent
cooperative motion of particles has been observed in the
dense phase of ABPs [35], where an effective velocity
alignment is observed in presence of MIPS due to the
interplay between steric repulsion and activity [36, 37].
Active particles arrange in vortex-like geometry with
a size increasing with the self-propulsion velocity [36],
and dense assembly of polydisperse particles move in ir-
regular turbulent flows [38]. Recently, similar station-
ary currents have been observed for motile cells in an
isolated ellipsoidal compartment [39], for active micro-
robots in a box [40], or for ABPs at boundary inhomo-
geneities [41, 42]. In the context of ABPs in a box, a
universal relation between the non-equilibrium probabil-
ity flux of the motion and the global geometric proper-
ties, via the boundary’s curvature, has even been estab-
lished [39].

In this paper, we employ a minimal model of interact-
ing ABPs under gravity inside a two-dimensional rectan-
gular box to characterize the wall-wetting mechanism of
an active sedimenting fluid. First we intend to confirm
that capillary rise is also present in the ABP system as
it has been predicted for the active lattice gas model [32]
and to scrutinize quantitative similarities and discrepan-
cies. Then, our main goal is to relate the capillary rise or
wall wetting with stationary particle currents in the sys-
tem and to study, how it varies with the particle-particle
interaction strength, down to the ideal, non-interacting
case.

The paper is organized as follows. We first describe
our model in Sec. II and present a detailed analysis of the
density profiles in Sec. III. Sec. IV contains our results on
the characterization of the current field and the vortices.
Sec. V presents the evolution of wetting height and vor-
tices when tuning the particle-particle interaction, and
Sec. VI discusses about our results on non-interacting
ABPs. Finally, in Sec. VII we conclude with a discus-
sion that elucidates our understanding of the system and
proposes future directions.

II. MODEL

Active Brownian particles serve as simple yet pow-
erful tools for modeling the behavior of motile matter
in different biological environments. Our model is mo-
tivated by experiments on self-propelled colloidal par-
ticles sedimenting under gravity [28, 29] confined to a
two-dimensional plane. We consider N circular, self-
propelled, Brownian particles in a 2D box of size (Lx ×
Ly) with reflecting boundary conditions along x and y
directions, subject to a gravitational force along −ŷ.
The particles propel themselves forward with a constant
propulsion speed vs and their orientations perform a ro-
tational diffusion with diffusion constant Dr such that
all motion is restricted to the (x, y) plane. The parti-
cles are considered to be smooth spheres such that there
is no hydrodynamic coupling and interchange of angular
momentum leading to systematic torques that might aid
alignment interactions. Configuration of the system at
each instant of time t is given by the positions and self-
propulsion directions {ri(t), θi(t)} of all N particles that
obey the following equations,

ṙi = vsêi − vgŷ +
Fi

γ
, (1)

θ̇i =
√

2Drη. (2)

The motion of each particle i is governed by a self propul-
sion velocity of constant magnitude vs directed along
êi = (cos θi, sin θi), the sedimentation velocity vg due to
the gravitational force along −ŷ, and a repulsive inter-
action force Fi on the ith particle due to its m neighbors
with the drag coefficient γ. η is a Gaussian white noise
with zero mean and unit variance.

We consider poly-disperse ABPs with radii Ri uni-
formly distributed in [0.4, 0.6], resulting in a mean di-
ameter of a = 1. The particles interact repulsively with
a spring-like force such that the force exerted on particle
i is given by Fi =

∑N
j=1 Fij + Fwall

i , with

Fij =

{
k(Ri +Rj − rij)r̂ij , ∀ rij < Ri +Rj

0, otherwise
(3)

and Fwall
i = −∇V wall(ri) the repulsive particle-wall force

derived from truncated Lennard-Jones potentials along
the four walls, diverging at x = 0, Lx, y = 0, Ly and with
range Ri. Note that particle i and j only interact when
they overlap, which means their distance rij = |ri − rj |
is smaller than the sum of their radii, Ri +Rj . Without
any loss of generality, we also choose the unit time as
t0 = a/vs = 1. The global packing fraction is given by
φ = ρ0

∑
i πR

2
i /N , where ρ0 = N/LxLy is the global

number density of ABPs.
We define the swimming Péclet number of the active

particles Pes = vs/aDr, the ratio of the sedimentation
velocity and the swimming velocity α = vg/vs, the grav-
itational Péclet number Peg = αPes and the particle-
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particle repulsion strength F0 = ka/γvs. We choose F0

such that the overlap between adjacent ABPs does not
exceed ∼ 1% of the particle diameter. Lx and Ly are
chosen to be larger than all persistence length scales of
the system and we also set Ly ≫ Lx so that the proba-
bility of accumulation of the particles on the upper plate
is negligible and the particles sediment on the lower plate
forming a dense layer at the bottom with a dilute layer
of ABPs on top.

To integrate Eqs. (1)-(2) we employ a forward Euler
method with a stepsize dt = 0.001 which implies that it
takes τ = 1/dt steps for each particle to move through
a distance of one mean particle diameter. We focus here
on the stationary state of the stochastic dynamics de-
fined in Eqs. (1)-(2). We start with randomly distributed
ABPs within the box and run the simulation until a sta-
tionary state is reached (teq ≃ 103). Then, we measure
steady state quantities averaged over at least 5000 con-
figurations with a waiting time of ∆t = 1 between two
successive realizations, and over at least 100 initial distri-
butions. A corresponding video file of the time-evolution
of N = 5000 active particles in a 100 × 400 box is at-
tached in the Supplemental Material [43] as Movie 1, for
the parameters: Pes = 30, α = 0.2 and F0 = 100. The
C++ code used to compute the numerical solutions of
Eqs. (1)-(2) is available in Ref. [44].

III. PARTICLE AND CURRENT DENSITY
PROFILES

As can be seen from an exemplary stationary density
profile shown in Fig. 1(a), the sedimenting ABPs form
a meniscus at the vertical walls, in spite of the repul-
sive particle-wall interactions. Here, we have considered
N = 5000 active particles in a 100×400 box – the global
number density is ρ0 = 0.125 and the global packing
fraction is φ ∼ 0.098 – with the following parameters:
F0 = 100, Pes = 30, and Peg = 6. This capillary rise,
which is absent in passive systems with repulsive particle-
wall interactions, emerges due to the propensity of self-
propelled particles to accumulate at confining walls in
combination with the gravitational force pulling the par-
ticles downwards, analogous to what happens in the ac-
tive lattice gas [32].

A closer look at the particle current in the stationary
state reveals the proper mechanism underlying the for-
mation of the meniscus. We define the particle current
density J(r) as

J(r) =
1

N

N∑
i=1

⟨ṙi(t) δ(r− ri(t))⟩t, (4)

where ṙi(t) denotes the velocity of the ith particle and
⟨·⟩t denotes an average over time and noise. From J(r)
we extract the time-averaged orientation ϕJ(x, y) via
J ∝ (cosϕJ , sinϕJ), and the curl amplitude A(x, y) =
∂xJy − ∂yJx. The magnitude and the orientation of the
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FIG. 1: Stationary state of ABPs in a box with reflect-
ing walls. Box dimension is 100 × 400, particle number is
5000, gravity is in −ŷ direction, F0 = 100, Pes = 30, and
Peg = 6. Shown quantities are time-averaged. (a) Particle
density ρ(x, y). (b) Modulus of the current density |J(x, y)|.
(c) Curl amplitude A(x, y) together with arrows indicating
current orientation ϕJ(x, y). (d) Average particle orientation
θ̄(x, y).

current vector field show a complex structure near the
two boundary walls at x = 0 and x = Lx and the liquid-
gas iso-density line, as shown in Figs. 1(b) and 1(c). One
sees that the current field due to the ABPs in the wet-
ting layer near the walls is aligned along −ŷ direction
and away from the walls, the flow field re-aligns in such
a way it supports a large vortex near the iso-density line,
as indicated by arrows in Fig. 1(c). Note that in ordinary
capillary action, particles climb up a wall against gravity,
whereas here they appear to climb down instead. This is
a consequence of self-propelled particles accumulating at
confining walls and the effect of gravitation pulling them
down. The flow field is mirror-symmetric about x = Lx/2
and one observes two large vortices and curl-clusters con-
centrated near the left and right boundaries. Thus, con-
trary to naive expectation, particles do not move upwards
along the wall, but downwards close to the wall and up-
wards – in a circular current – at some distance to the
wall.

We also calculate the time-averaged polarization vector
of ABPs, defined as

P(r) =
1

N

N∑
i=1

⟨êi(t) δ(r− ri(t))⟩t. (5)

Fig. 1(d) shows the mean-orientation θ̄ of the ABPs,
given by P ∝ (cos θ̄, sin θ̄). The particles have an effec-
tive alignment towards the nearest wall, in the wetting
layer and close to the liquid-gas interface (defined further
below), from which the wall-accumulation arises.

In the Supplemental Material [43], we show a view of
the entire domain (Fig. S1), a plot of the velocity V =
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FIG. 2: (a) Decay of the iso-density profile h(x), scaled by
Pe2s, as a function of distance from the wall x, for different Pes
and Peg. The collapsed curves have been fitted to a double-
exponential function, shown in solid line. (b) Density profile
ρ(y) ∼ exp(−y/λsed) of the dilute layer, for three different
sets of (Pes, α). (c) Scaling plot for the sedimentation length
extracted from (b): λsed ∼ Pe2s/Peg, such that λsedα ∼ Pes
(with α = Pes/Peg) is linear in Pes. The size of the simulation
box is 200×800 and the particle density is ρ0 = 0.125. (d) The
wall and bulk density profiles ρ(xwall, y) (black), ρ(xbulk, y)
(red) are respectively shown for the parameter set F0 = 20,
Pes = 50, and α = 0.4. The wetting height ∆hmax is esti-
mated from the difference curve ρ(y, xwall)−ρ(y, xbulk) (green)
from the y values where it decays to a value smaller than 0.01,
as indicated schematically in the plot.

J/ρ (Fig. S2) and the temporal fluctuations (Fig. S3) of
the quantities presented in Fig. 1.

To analyze the wetting height, we can consistently de-
fine a liquid-gas iso-density interface at ρiso = (ρl+ρg)/2,
where ρl and ρg are the densities of the dense and di-
lute phase, respectively. Fig. 2(a) shows that the scaled
height profiles h(x) of the iso-density curves collapse on a
master curve, which can be fitted by a double-exponential
given by (h(x)−h0)/Pe

2
s ∼ a exp(−x/λ1)+b exp(−x/λ2),

where h0 is the height of the bulk phase measured with
respect to the bottom plate and x is the distance from
the wall in the direction transverse to gravity.

The density of the dilute phase decays with vertical
distance y from the iso-density line defined above as
ρ(y) ∼ exp(−y/λsed), as shown in Fig. 2(b), where λsed is
the sedimentation length which scales as λsed ∼ Pe2s/Peg
for large activity Pes [4, 17, 28], as shown in Fig. 2(c).

In Fig. 2(d), we plot density profiles ρ(xwall, y) and
ρ(xbulk, y) of the ABPs as a function of y, where xwall =
0, Lx is situated very close to the left/right walls and
xbulk = Lx/2 is situated at the middle of the box. At
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2.1
g is

shown in solid line. (b) Maximal wetting height ∆hmax as
a function of λsed for different Pes. The scaling ∆hmax ∼ λ1.8

sed

is shown in solid line. λsed for each set of (Pes,Peg) has been
estimated separately. Box dimension is 200×500 and particle
number is 2× 104.

x = xwall, the wetting density profile is observed, while
at x = xbulk, the density profile behaves like in a pas-
sive sedimenting system of purely repulsive Brownian
particles. We subtract these two densities ρ(xwall, y)
and ρ(xbulk, y) – the bulk density is expected to de-
cay faster than the wall density – and the maximum
wetting height ∆hmax is measured by estimating the
difference between two y values which correspond to
ρ(xwall, y)− ρ(xbulk, y) ≲ 0.01 as shown in Fig. 2(d).

We further study the dependence of the maximum wet-
ting height ∆hmax of the wetting profiles as a function of
Pes,Peg and find a scaling behavior ∆hmax ∼ Peνs/Pe

β
g

with ν ∼ 4 and β ∼ 2.1. In Fig. 3(b) we show ∆hmax as
a function of λsed and find a super-linear scaling depen-
dence ∆hmax ∼ λµ

sed with µ = 1.8. Note that this agrees
roughly with the scaling reported in Fig. 3(a) after in-
serting λsed ∼ Pe2s/Peg. Note that, in a previous study
of capillary rise in an ALG setting [32], the value of the
exponent µ was found to be 1.3. The wetting properties
also depend on the strength of the particle-particle repul-
sion F0. It turns out that the maximum wetting height
decreases with F0 and the meniscus width increases with
F0. We discuss our results for varying F0 in Sec V.

IV. PARTICLE CURRENT AND VORTICES

The particle current density J(r), depicted in Fig. 1(c),
indicates the formation of the meniscus, including its
height and width, which is mainly caused by the large
circular current – or vortex – emerging at the base of the
meniscus. Therefore we quantify, in this section, the size
and strength of the emerging vortex and its dependence
on activity and gravity.

First, we calculate the total vorticity in the systems,
measured by the enstrophy

ε =

∫
ρ>ρiso

dxdy |A(x, y)|2, (6)
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strophy increases as a function of Pes for fixed Peg = 8.

where A is the numerically computed curl of J(x, y) and
the integral is computed over the entire liquid bulk phase
of ABPs below the liquid-gas iso-density line. Fig. 4
shows that the enstrophy increases with Pes, and de-
creases with Peg. A major contribution to the vorticity or
total curl in the system comes from the shear band along
the wall (c.f. Fig. 1(c)), where particles move downwards
under the influence of the gravitational force. To quan-
tify the size and strength of the big vortex at the base of
the meniscus, alternative methods must then be applied.

Flux line analysis

First, we consider the trajectories of a virtual tracer
particle rtracer(t) under the influence of a vector field de-
fined by the current density

ṙtracer = J(rtracer), (7)

With the stationary current density field J that we de-
termined above, we integrate numerically the differential
equation (7) from a given initial position r0. If the initial
position r0 of a tracer particle lies on a vortex loop, then
the mean displacement σtracer = |rtracer(t)−r0| shows os-
cillations as a function of time and one can estimate the
size of the loop from the maximum amplitude of σtracer,
as shown in Fig. 5(a). Note that the period of the os-
cillations in Fig. 5(a) can be identified with a turn-over
time of the vortex, and is around 300 time units for the
Péclet number considered there, which is slow compared
to the velocity of the particles.

We search for the largest closed loop in the veloc-
ity field using the maximum amplitude of σtracer as a
measure of the mean radius of the two large vortices
in the system. We denote the maximal amplitude of
the mean displacement of a tracer in the current J(r)
as max[σtracer], to provide a first estimate of the spatial
extension of the vortex. Fig. 5(b) shows this maximum
max[σtracer] as a function of Pes and Peg. For a fixed
Peg the mean radius depends non-monotonically on the
swimming Péclet number Pes, which we can rationalize as
follows: the vortex emerges due to the self-propulsion of
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FIG. 5: (a) Representative plot for the mean displacement
σtracer of a tracer particle on a vortical loop. From the peak
value of σtracer one can read off the size of the loop. The
largest peak value among all the oscillatory tracer particle
trajectories gives the size of the largest vortex. (b) The largest
amplitude in σtracer is plotted as a function of Pes for three
different Peg values. (c) Area integral W (r) =

∫
S
AdS, where

S is the area of a circle of radius r drawn around the center of
the largest vortex. W (r) vs r is plotted for different values of
Pes,Peg. (d) The saturation value of W (r) is plotted against
Pes for two different values of Peg.

the particles, for which reason one expects the size and
strength of the circular current to increase with swim-
ming Péclet number Pes, which is indeed the case for
small Pes. However, for larger Pes the escape probabil-
ity of the ABPs supersedes the gravitational force such
that the outer flow lines of the vortex do not close and
hence max[σtracer] decreases. For even larger Pes values,
one does not find a closed vortex in the flow field. For
small Pes, with increasing gravitational force Peg, the
wetting height decreases and the vortex gets more con-
centrated towards the walls. Consequently, the vortex
size decreases with Peg for lower Pes. However, as Pes
increases, a larger gravitational pull is required for the
flow fields to close and give rise to a vortex and hence,
for larger Pes, max[σtracer] increases with Peg.

Finally, the strength of the vortex can be quantified
by an integral over the curl, W (r) =

∫
S
AdS, where S

is a circle of radius r around the center of the largest
vortex. As shown in Fig. 5(c), W (r) increases with r and
saturates at the boundary of the vortex at a value Wmax,
which we identify with its strength. Fig. 5(d) shows that
the vortex strength increases and saturates with Pes and
decreases with Peg.
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FIG. 6: Areas of the largest curl clusters (a) Swall and
(b) Sbulk plotted against Pes for 3 different values of Peg.
Swall and Sbulk show power-law behavior ∼ Peνs with ν = 3
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Curl cluster analysis

As a measure of the spatial extent of the vortices, we
perform a cluster analysis of the curl amplitude A(x, y).
By introducing a small threshold value A0 = 0.01 for the
curl strength, we can identify connected clusters in which
all sites have a curl strength larger than this threshold
A(r) > A0. The largest curl clusters can be distinguished
into two regions: the shear zone close to the wall where
the wetting takes place and the other close to the liquid-
gas iso-density line close to the left and right boundary
walls where the vortices form. The layer of ABPs wetting
the wall experiences a repulsion due to the reflecting wall
and hence undergoes a slow re-orientation as a result of
the collisions with the wall. This mechanism gives rise
to a large magnitude of curl in the wetting layer close
to the wall. The area of the large cluster in the wetting
layer close to the wall is denoted as Swall, and the area of
the cluster close to the iso-density line (but outside the
wetting layer) is denoted Sbulk, both of which provide an
alternative estimate of the spatial extent of the vortices.

Fig. 6 shows Swall and Sbulk as functions of Pes for
three different values of Peg. The cluster size increases
with Pes since with higher swimming persistence the
ABPs wet the walls more (see Fig. 3) and have a higher
escape rate probability from the liquid-gas interface.
Swall and Sbulk show power-law behavior ∼ Peνs with
ν = 3 and ν = 2, respectively. However, the cluster
size decreases with Peg, due to increased gravitational
persistence, the maximum wetting height decreases and
so does the escape rate from the liquid-gas iso-density in-
terface. As a consequence, with increasing Peg, the flow
gets more concentrated towards the walls, thus decreas-
ing the effective area of the vortices.

Furthermore, we measure the density function for the
curl amplitude and define a two-state variable η such that
η(x, y) = 1 for |A(x, y)| > 10−2 and η(x, y) = 0 other-
wise. We exclude the wall shear zone from our density
calculation so that the high curl values due to the wet-
ting layer do not dominate the signal from the vortices.
Fig. 7(a) shows the curl density ρA(r0) = ⟨η(x, y)⟩ as a
function of r0 =

√
x2 + y2. The interval where the curl
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FIG. 7: (a) Density ρA for the curl variable as a function of
the distance r0 measured from the lower corners of the box.
Since the density profiles are symmetric about x = L/2, we
average over the left and right halves of the box for mea-
suring ρA. (b) Length scale r1 plotted against Pes for three
different Peg values. (c) Two-point correlation function of the
curl amplitude CA plotted against r0 for five sets of Pes,Peg.
(d) Correlation length ζ estimated for CA using an exponen-
tial fit, as a function of Pes, for three different values of Peg.

density remains zero indicates that the curl is very small,
implying there is no significant current in this region.
The curl density becomes positive at r0 ∼ 50, roughly
indicating the distance from the bottom corners at which
the vortex centers are located. Since the numerical cal-
culation has been carried out by excluding the shear wet-
ting zone, one can interpret the length scale r1 where the
curl density is high as an estimate of the linear dimension
of the largest curl cluster exclusively due to the vortex.
Fig. 7(b) shows that r1 increases linearly with Pes, in
accordance with the quadratic dependence of the vortex
area Sbulk on Pes shown in Fig. 6(b). However, note that
there is no non-monotonicity with increasing Pes similar
to that found in the vortex sizes obtained from the tracer
particle analysis, as presented in Fig. 5(b). Indeed, when
the vortex loops do not close, there can be significant
curl due to the turbulence in the current field and one
ends up observing curl clusters larger than the size of the
closed vortices for same set of parameters.

Finally, we measure the two-point correlation function
for the curl A(x, y):

CA(δx, δy) = ⟨A(x0, y0)A(x0 + δx, y0 + δy)⟩x0,y0
, (8)

averaged over all space points (x0, y0) in the domain.
We again exclude the wetting layer such that the length
scales of the vortices can be extracted from the density
and correlation functions of the flow fields. Fig. 7(c)
shows the two-point correlation function CA(r0) as a
function of r0 =

√
δx2 + δy2. We observe short-range
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FIG. 8: (a) Maximum wetting height ∆hmax plotted against
F0 indicates that the wetting height decreases as inter-particle
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large F0. (b) Total number of particles N(y > yiso) elevated
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in the system plotted against F0. (c) Width of the meniscus
plotted against F0. The width of the meniscus Wmen increases
as a function of F0. (d) Maximum amplitude of σtracer plotted
as a function of F0.

correlations which arise only due to the two large vor-
tices that form near the left and right boundary walls.
Fig. 7(d) shows the correlation length ζ estimated for
the correlation function CA using an exponential fit. ζ
shows a power law dependence on Pes, with an expo-
nent depending weakly on Peg. For Peg = 5 we find that
ζ ∼ Pes, while for Peg = 10 the correlation length follows
ζ ∼ Pe1.2s .

V. INTERACTION STRENGTH DEPENDENCE

Varying the repulsive particle-particle interaction
strength F0 changes the effective hard-core diameter of
the ABPs and the bulk phase behaves like a more com-
pressible fluid as F0 is decreased. Fig. 8(a) shows the
maximum wetting height ∆hmax decays with F0 and
approaches a constant value for sufficiently large inter-
particle repulsion strengths.

We also measure the total number of particles N(y >
yiso) elevated above the iso-density line scaled by the to-
tal number of particles in the system as a function of F0,
shown in Fig. 8(b). As a consistency check, the height
of the bulk iso-density line yiso is estimated using two
methods: (1) ρiso is set to 0.5 uniformly for all F0, (2)
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FIG. 9: Current lines and curl amplitude for fixed Pes = 30
and Peg = 6 (α = 0.2), and decreasing inter-particle repulsive
force: (a) F0 = 100, (b) F0 = 3, (c) F0 = 0.3, and (d) F0 = 0.
Box dimension is 100× 400, and particle number is 5000.

Fig. 2(d) shows two inflection points in ρ(y) that we la-
bel as ρl and ρg. For the second method we consider
ρiso = (ρg + ρl)/2. Both methods show that the total
mass elevated above yiso decreases with F0. Fig. 8(c)
shows the width of the meniscus Wmen plotted against
F0 and defined as the smallest distance to the walls
where the density ρ(Wmen, y) ≃ ρ(xbulk, y). The menis-
cus width increases as a function of F0. As the ABPs
become harder, the wetting layer behaves like an incom-
pressible fluid and hence for nearly equal number fraction
of ABPs elevated above yiso, the meniscus width increases
with F0.

Fig. 8(d) shows the size of the vortex also depends
on the strength of the particle-particle repulsion F0, for
fixed Pes and Peg. Small values of F0 mean that the par-
ticles have a soft-core interaction and the bulk behaves
like a compressible fluid, which increases the vortex size
in comparison to the less compressible, jammed fluid at
large values of F0.

Fig. 9 shows the evolution of the current density lines
and the curl amplitude of the current with decreasing
inter-particle repulsive force from F0 = 100 to F0 = 0,
for fixed Pes = 30 and Peg = 6, in a 100× 400 box. For
F0 ≳ 10, the inter-particle force is strong enough to cre-
ate the liquid phase observed in Fig. 1, and the main vor-
tex is located at the base of the meniscus, characterized
in Sec. IV. For F0 ≲ 10, the particles are no more phase-
separated and a system of three vortices is observed at
the lower left corner (with two counter-clockwise and one
clockwise rotating current) and at the lower right corner
(with one counter-clockwise and two clockwise rotating
current), characterized in Sec. VI in the limit F0 → 0.
Hence, the morphology of the stationary particle current
and the vortex arrangement changes substantially as soon
as MIPS ceases to exist at lower interaction strength F0.
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VI. NON-INTERACTING ABPS (F0 = 0)

The existence of the stationary currents in the system
and the vortices in the left and right lower corners can be
traced back to the specific geometry of the particle con-
finement, which can be seen most clearly in the absence
of particle-particle interactions, F0 = 0. For this reason
we formulate in this section the hydrodynamic theory for
a system of non-interacting active Brownian particles un-
der gravity. Without any interaction between particles,
the position and self-propulsion direction of the particles
obey the equations

ṙ = vseθ − vgŷ +
√
2Dtηr, (9)

θ̇ =
√

2Drηθ, (10)

equivalent to Eqs. (1) and (2) for interacting ABPs. The
motion is governed by a self propulsion velocity of con-
stant magnitude vs directed along eθ = (cos θ, sin θ) and
the sedimentation velocity vg due to the gravitational
force along −ŷ. Dt and Dr are translational and ro-
tational diffusivities, respectively. ηr and ηθ are inde-
pendent Gaussian white noises with zero means and unit
variances. From these Langevin equations (9) and (10),
the probability density function p(r, θ; t) for a particle to
be at position r = (x, y) with an orientation θ at time t
follows the Fokker-Planck equation:

∂tp = ∇ · [Dt∇p− (vpeθ − vgŷ) p] +Dr∂
2
θp. (11)

We numerically solve the steady state of this equation
using FreeFEM++ [45], a software package based on the
finite element method [46]. Writing Eq. (11) under the
form ∂tp = −∇ · jr − ∂θjθ, defining the currents jr =
−Dt∇p+(vpeθ−vgŷ)p and jθ = −Dr∂θp, the stationary
state satisfies the equation

∇ · jr + ∂θjθ = 0. (12)

The weak formulation of Eq. (12) is the integral equation:∫
Ω

drdθ w (∇ · jr + ∂θjθ) = 0, (13)

for any arbitrary integrable function w(r, θ), over a 3d
cubic space Ω = [−Lx/2, Lx/2] × [0, Ly] × [0, 2π]. Inte-
grating by part, we have∫

Ω

drdθ (∇w · jr + ∂θwjθ) = 0, (14)

due to the zero-flux boundary condition in x and the
periodic boundary condition in θ. This integral equa-
tion is solved over the cubic space Ω divided into a
500 × 500 × 16 tetrahedral mesh-grid. The probability
is then calculated at the nodes of the mesh-grid and in-
terpolated linearly over the space with Lagrange poly-
nomials. From this numerical solution for the probabil-
ity density function p(r, θ), we extract three integrated
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FIG. 10: Steady state density, polarization and current den-
sity profiles for non-interacting ABPs with Pes = 2 and α =
0.25 in a 20×20 box, obtained numerically with FreeFem++.
(a) Steady state density ρ(x, y). The iso-density line ρ = 1 is
shown by a solid black line. (b) Mean orientation θ̄(x, y) ob-
tained from the steady state polarization P(x, y). (c) The cur-
rent density lines ϕJ(x, y) are shown by arrows, and the curl
amplitude A(x, y) is represented by the colorbar. (d) Zoomed-
in version of the bottom-left corner of (c). Three main vortices
are observed: vortex 1 and vortex 3 along the bottom and left
walls, respectively, and anti-vortex 2 at the corner.

functions: the particle density ρ(r) =
∫
dθ p(r, θ), the po-

larization vector P(r) =
∫
dθ eθp(r, θ), and the current

density J(r) =
∫
dθ jr(r, θ). With Eq. (11), the current

density writes

J = −Dt∇ρ+ vpP− vgρŷ, (15)

in terms of the density and the polarization vector. We
further define the curl amplitude of the current as

A(x, y) = ∂xJy − ∂yJx

= vp [∂xmy − ∂ymx]− vg∂xρ. (16)

Without any loss of generality, we set Dr = 1 and
Dt = 1 defining the scales of time and length, respec-
tively. The remaining parameters are then the swimming
Péclet number Pes = vs/

√
DtDr, the ratio of velocities

α = vg/vs = Peg/Pes and the system size Lx × Ly. The
FreeFEM++ code used to compute the numerical solu-
tions is available in Ref. [44].

Fig. 10 shows numerically obtained steady state den-
sity, polarization and current density profiles for non-
interacting ABPs with Pes = 2 and α = 0.25 in a
20 × 20 box. The density profile shown in Fig. 10(a)
establishes the existence of a capillary rise near the ver-
tical walls where the particles are mainly oriented to-
wards the wall, as shown in Fig. 10(b), with the mean
orientation θ̄(x, y) calculated from the polarization vec-
tor as P ∝ (cos θ̄, sin θ̄). The wetting height is calcu-



9

0 5 10 15 20 25
y

10−1

100

101

ρ
(y

)

∆h = 6.1

∆h = 6.1

∆h = 6.1

∆h = 6.1

(a)
ρwall
ρbulk

10−1 100 101 102

Pe2
s/Peg

100

102

∆
h

(d)
Peg = 0.1
Peg = 0.2
Peg = 0.5
Peg = 1
Peg = 2

(Pe2
s/Peg)

1.1

10−1 100 101

Pes

100

101

102

λ
se

d
·P

e g

(b)
Peg = 0.1
Peg = 0.2
Peg = 0.5
Peg = 1
Peg = 2

1 + Pe2
s/2

10−1 100 101

Pes

10−1

101

103

∆
h
·P

e g

(c)
Peg = 0.1
Peg = 0.2
Peg = 0.5
Peg = 1
Peg = 2

Pe2.3
s

FIG. 11: (a) Density profile at the center of the box ρbulk
and near the vertical wall ρwall for non-interacting ABPs with
Pes = 2 and α = 0.25 in a 25× 25 box, obtained numerically
with FreeFem++. For an iso-density line chosen in the expo-
nential decay regime, the wetting height is always ∆h = 6.1.
(b) Sedimentation length λsed as a function of Pes, for several
Peg. (c) and (d) Wetting height ∆h as a function of Pes and
Pe2s/Peg, respectively, for several Peg. It is calculated with
the iso-density line ρ = 1 in a 100× 100 box. The dotted line
represents the fitted curve for all presented data.

lated from iso-density lines, as presented in Fig. 10(a)
for ρ = 1 by a solid black line. Despite the absence
of any particle interactions, the current field is non-zero
and forms vortices at the bottom corners of the box,
as shown in Figs. 10(c) and 10(d), where the current
density lines ϕJ(x, y) are calculated from the current as
J ∝ (cosϕJ , sinϕJ) and the curl amplitude A(x, y) is
calculated with Eq. (16). Note that the current field
predicted by the Fokker-Planck equation for ideal ABPs
agrees with the one obtained for the microscopic model
with interaction F0 = 0, as shown in Fig. 9(d). Fig. 10(d)
depicts the presence of three main vortices at the bottom-
left corner, with two counter-clockwise rotating currents
along the bottom and left walls, and one clockwise rotat-
ing current at the corner.

Far from the top and bottom walls, the density writes

ρ(x, y) = f(x) exp(−y/λsed) (17)

with the sedimentation length λsed ≃ Pe2s/Peg, in the
limit of large swimming Péclet numbers [29]. Fig. 11(a)
shows the density at the center of the box ρbulk(y) =
ρ(0, y) and near the vertical wall ρwall(y) = ρ(±Lx/2, y)
with Pes = 2 and α = 0.25 in a 25 × 25 box. They
present an exponential decay regime, as expected in the
middle region, and the wetting height is then independent
of the choice of the iso-density line for a dilute system.
Fig. 11(b) shows the sedimentation length λsed as a func-
tion of Pes for several Peg. In the small and large Pes lim-
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FIG. 12: Current density lines ϕJ(x, y) for non-interacting
ABPs with Pes = 2 and (a) α = 0, (b) α = 0.25, (c) α = 0.5,
and (d) α = 0.75, numerically calculated with FreeFEM++
in a 10× 10 box. The colorbar represents the curl amplitude
of the current A(x, y).

its, we obtain the asymptotic expressions: λsed ∼ 1/Peg
and λsed ∼ Pe2s/2Peg, respectively. Merging these two
limits, the sedimentation length can be approximated by

λsed ≃ 1 + 0.5Pe2s
Peg

, (18)

shown in Fig. 11(b) with dashed line, and valid for not too
large Peg. Defining fbulk = f(0) and fwall = f(±Lx/2)
in Eq. (17), the wetting height writes

∆h = λsed ln(fwall/fbulk). (19)

Figs. 11(c) and 11(d) show the wetting height ∆h as
a function of Pes and Pe2s/Peg, respectively, for several
gravity, and calculated for the iso-density line ρ = 1 in a
100×100 box. The wetting height follows the power-laws:
∆h ∼ Pe2.3s /Peg, from Fig. 11(c), and

∆h ∼ (Pe2s/Peg)
1.1 ∼ λ1.1

sed, (20)

from Fig. 11(d), which are both equivalent. This power-
law is different from the result obtained for interacting
ABPs where ∆h ∼ λ1.8

sed, meaning that the interactions
between particles increase the wetting of particles on ver-
tical walls.

Fig. 12 shows the current density lines and the curl
amplitude of the current with Pes = 2 and increasing
gravity from α = 0 to α = 0.75, in a 10× 10 box. With-
out gravity, Fig. 12(a), the currents self-organize in a
way that is compatible with maximum particle accumu-
lation in the corners: incoming flux along the diagonal
and outgoing flux parallel to the wall. This eight vortices
structure is fully determined by the boundary’s geome-
try, similar to what has been observed for ABPs in an
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FIG. 13: (a)-(c) Vortex area Si as a function of Pes for non-
interacting ABPs with several α and in a 10 × 10 box. (d)-
(f) Circulation Wi =

∫
Si

AdS of the corresponding vortices.
The labels 1, 2 and 3 correspond to the vortices described on
Fig. 10(d).

elliptical geometry [39]. Under gravity, the two vortices
in the upper left and right corner are pulled down, re-
sulting a) in a downward flux along the vertical walls,
and b) in big counter-clockwise and clockwise rotating
currents at the bottom close to the lower left and right
corners, c.f. Fig. 10(d). In addition, the curl ampli-
tude increases with gravity despite the extension of the
vortices decrease. Two corresponding video files are at-
tached in the Supplemental Material [43] as Movie 2a and
Movie 2b, showing the evolution of the particle density
and current density lines, respectively, under increasing
gravity.

Figs. 13(a)-(c) show the vortex area of the three vor-
tices described on Fig. 10(d), as a function of Pes and α,
in a 10×10 box. Fig. 13(a) shows the vortex area S1 of the
counter-clockwise rotating current near the bottom wall.
The area is calculated such that the curl amplitude satis-
fies |A| > 0.001Amax, where Amax is the local maximum
of |A|. This vortex area decreases with swimming Péclet
number and gravity. Fig. 13(b) shows the vortex area S2

of the clockwise rotating current at the corner. This vor-
tex area has non-monotonous evolution with swimming
Péclet number, but increases with gravity. Fig. 13(c)
shows the vortex area S3 of the counter-clockwise rotat-
ing current near the left wall. This vortex area decreases
with swimming Péclet number and the gravity has low

impact on it. Without gravity, i.e. α = 0, the current
lines of these vortices are anti-symmetric (see Fig. 12(a))
and then S1 = S2 = S3 ≲ LxLy/8. This vortex area de-
creases with swimming Péclet number. When the gravity
is increased, the current lines are deformed in the −ŷ di-
rection, telling that S1 decreases and S2 increases with
gravity, while S3 is globally not impacted. S1 and S3

remain decreasing functions of Pes when S2 has a non-
monotonic behavior with Pes.

Figs. 13(d)-(f) show the circulation of the correspond-
ing vortex, calculated as Wi =

∫
Si

AdS calculated over
the area Si. The circulation of the vortices along the
bottom and left walls, W1 and W3 respectively, in-
creases with both Pes and Peg, as shown in Figs. 13(d)
and 13(f), respectively. Similarly, the absolute circula-
tion of the anti-vortex W2 increases with Pes, but has a
non-monotonic behavior with α, as shown in Fig. 13(e).

VII. DISCUSSION

We have shown that a system of active Brownian par-
ticles in the phase separated (or MIPS) phase, which
sediment in a homogeneous force field, form a wet-
ting meniscus at a confining wall, in spite of repulsive
particle-wall interactions. Increasing the activity, mea-
sured by the swimming Péclet number Pes = vs/aDr,
increases the height of the meniscus ∆h, and increasing
force field, measured by the gravitational Péclet num-
ber Peg = (vg/vs)Pes, decreases the meniscus height.
Quantitatively, ∆h grows monotonously with the sed-
imentation length λsed ∼ Pe2s/Peg, approximately like
∆h ∝ λ2

sed for strongly repelling particles and roughly
linear with λsed for non-interacting ABPs. We also find a
non-trivial dependence of the meniscus dimensions on the
particle interaction strength or particle softness: softer
particles (decreasing F0) increase the meniscus height
and decrease the meniscus width, but increase the total
elevated mass.

The formation of the meniscus is determined by the
formation of a circular particle current, a vortex, cen-
tered at the base of the meniscus, which can easily be
seen in the movie for interacting ABPs in the Supple-
mental Material [43], as Movie 1: in the gas region above
the iso-density line close to the walls there is a net par-
ticle current towards the wall. Particles colliding with
the wall stay accumulate there and start to sink towards
the liquid region due to the force field. This produces
a strong downward particle flow along the wall, which
then gets deflected away from the wall when it hits the
denser liquid region. Thus, below the liquid-gas interface
particles flow away from the wall, and particles reaching
the interface have an upward orientation and the circular
current closes. Note that there are two walls and there-
fore two vortices: one in the lower right and one in the
lower left corner.

The flow lines of the particle current indicate that each
vortex extends over one half of the system, c.f. Fig. 1(c),
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but it is strongest close to the wall and the meniscus,
and very weak far away from it, see Fig. 1(b). It turns
out that the total strength of the vortex, measured by its
total curl in a concentric disk, increases monotonously
with the activity / the swimming Péclet number Pes.
Analogously the region in which the current is strongest
increases with the Pes, too, such that the system’s ac-
tivity determines the size and strength of the circular
particle current together with the meniscus or wetting
height determined by it.

Interestingly, the origin of the two major vortices can
be traced back to the presence of the confining walls of
the system: non-interacting (ideal) ABPs in a quadratic
area with repulsive walls form stationary probability cur-
rents already without a force field. Those are organized
according to the fourfold symmetry of the system, namely
in each quadrant two vortices, one above and one below
the diagonal emanating from the corner. The circula-
tion of each vortex pair in one quadrant is such that
the current along the diagonal is directed towards the
corner, leading to the well-known accumulation of self-
propelled particles in corners or regions, where bound-
ary curvature is high [15, 39, 47]. Switching on the force
field (gravity) breaks the fourfold symmetry, squeezes the
vortices in the lower quadrants and expands those in the
upper half. The two elongated vortices at the walls in
the ideal ABP system, one counter-clockwise at the left
wall, one clockwise rotating at the right wall, are those
that have their counterpart in the interacting ABP sys-
tem described above.

Concerning the experimental observability of what we
have reported in this paper we would like to note that
recently the capillary rise along (or “active wetting” of)
a wall in a system of active colloids under a gravitational
force has been reported [34] and also the emerging par-
ticle currents have been discussed. So, in principle the
original prediction of [32] as well as what we have re-
ported here have been experimentally confirmed. A few
differences should be noted, though: first, the particle
activity reached in [34] was, for experimental reasons,
much lower than the activities considered here. There-
fore, their system was sedimenting but gaseous (i.e. not
in the MIPS region). Second, the observed meniscus (or
wetting layer) was much thinner than what we obtained
here, even thinner than what we report for the ideal
(non-interacting, and thus also gaseous) ABP case, and
the meniscus height was much larger, i.e. the particles

at the wall went much higher above the iso-density line.
Third, the experimentally observed particle current along
the wall was directed upwards, consistent with the larger
meniscus height and giving rise to a clockwise rotating
vortex, differing from the downward wall-current and the
counter-clockwise rotation reported here. The latter two
observations were attributed to additional particle-wall
adhesion and alignment forces [34], both emerging due
to hydrodynamic particle-wall interactions of the active
colloids. It turned out that the inclusion of those addi-
tional particle-wall interactions in an ABP model like the
one we considered here could even quantitatively recapit-
ulate the experimental observations.

Finally, the fact that one observes something that is
reminiscent of capillary rise at a wall, in spite of repulsive
particle wall interactions, is the most obvious signature
for the non-equilibrium character of this system. More
fundamentally, being out-of-equilibrium in the station-
ary state implies the presence of stationary probability
currents (since otherwise detailed balance would be ful-
filled), but these generally live in high-dimensional con-
figuration space. The system we studied here actually
shows emergent probability currents leading directly to
real-space currents, similar to what has been reported
for self-propelled particles in an ellipsoid geometry [39],
or for ABPs at boundary inhomogeneities [41, 42]. In
addition, these currents perform real work by lifting a
fraction of the particle mass above the liquid-gas inter-
face against the force field. Thus, one would expect the
size and strength of the emerging currents to be related
to the entropy production rate of this system, or at least
an equivalent one in which the dynamical rules have been
defined thermodynamically consistent [48]. These ques-
tions as well as in how far the strength of the observed
vortices is related to the vorticity introduced in [49] are
interesting and would be worthwhile to be studied in the
future.
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FIG. S1: [Reproduction of Fig. 1 with a view of the entire domain] Stationary state of ABPs in a box with reflecting walls. Box
dimension is 100× 400, particle number is 5000, gravity is in −ŷ direction, F0 = 100, Pes = 30, and Peg = 6. Shown quantities
are time-averaged. (a) Particle density ρ(x, y). (b) Modulus of the current density |J(x, y)|. (c) Curl amplitude A(x, y) together
with arrows indicating current orientation ϕJ(x, y). (d) Average particle orientation θ̄(x, y). Quantities become more noisy
with increasing y, due to the lack of particles for a fixed time-averaging window (density presents an exponential decay with y
in the dilute region).
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FIG. S2: Stationary state of ABPs in a box with reflecting walls. Box dimension is 100× 400, particle number is 5000, gravity
is in −ŷ direction, F0 = 100, Pes = 30, and Peg = 6. Shown quantities are time-averaged. Here we consider the averaged
velocity defined as V = J/ρ. (a) Modulus of the velocity |V(x, y)|. (b) Curl amplitude ∂xVy − ∂yVx together with arrows
indicating velocity orientation ϕV (x, y), such that V = (cosϕV , sinϕV ).
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FIG. S3: Temporal fluctuations of the stationary state quantities shown in Fig. 1: (a) Standard deviation of the particle density
σρ =

√
⟨ρ2⟩t − ⟨ρ⟩2t , where ⟨·⟩t denotes the average over time. (b) Standard deviation of the polarization σP =

√
⟨P2⟩t − ⟨P⟩2t .

(c) Standard deviation of the current density σJ =
√

⟨J2⟩t − ⟨J⟩2t .
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