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The effective diffusivity De of tracer particles diffusing in periodically corrugated axisymmetric
two and three dimensional channels is studied. The majority of previous studies of this class of
problems are based on perturbative analyses about narrow channels, where the problem can be
reduced to an effectively one dimensional one. Here we show how to analyze this class of problems
using a much more general approach which even includes the limit of infinitely wide channels. Using
the narrow and wide channel asymptotics, we provide a Padé approximant scheme that is able
to describe the dispersion properties of a wide class of channels. Furthermore, we systematically
identify all the exact asymptotic scaling regimes of De and the accompanying physical mechanisms
that control dispersion, clarifying the distinction between smooth channels and compartmentalized
ones, and identifying the regimes in which De can be linked to first passage problems.
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I. INTRODUCTION

How fast does a cloud of tracer particles, moving
stochastically in a complex heterogeneous medium, dis-
perse ? This question naturally appears in a wide range
of contexts, including mixing [1–3], sorting [4], contam-
inant spreading [5] or chemical reactions kinetics [6].
The characterization of dispersion properties, which re-
sult from a non-trivial interplay between the geometry of
the heterogeneous medium and the transport by forces
and/or flows, is an active field of research [1–4, 7–11]. At
large length and time scales, dispersion is usually charac-
terized by an effective diffusion tensor whose components
can be considerably different from typical microscopic
diffusivities [12]; canonical examples for increased and de-
creased diffusivities are given by, respectively, motion in
shear hydrodynamic flows (called Taylor dispersion [13])
and in periodic [14] and random [15] potentials.

Here, we consider diffusion of non-interacting parti-
cles in channels of non-uniform cross-section, a paradigm
for diffusion in confined environments [16, 17], arising
in contexts as varied as biological cells [18, 19], zeolites,
porous media, ion channels and microfluidic devices. It
is well known that, in the absence of hydrodynamic flow,
the effective diffusivity of particles in channels is lower
than the microscopic diffusivity. Qualitatively, this can
be understood by considering the entropy S(z), which
measures the number of available lateral configurations
at fixed longitudinal position z: the narrow regions have
a reduced entropy and act as entropic barriers, while the
wide regions can be viewed as entropic traps, leading to
a motion slower than in a uniform channel.

The first quantitative results on diffusion in channels
are attributed to Jacobs [20] who derived the first form of
the so-called Fick-Jacobs (FJ) approximation. This stan-
dard approach, and its various extensions [21–31], are
based on a dimensional reduction, and approximate the
dynamics of the tracer longitudinal position z(t) by a dif-
fusive dynamics in an entropic potential φ(z) ≡ −TS(z),

possibly with a position dependent diffusion coefficient
D(z). Once the dimensional reduction is carried out,
the effective diffusion constant can be computed using
exact one-dimensional results [32–34]. Such FJ-like ap-
proaches rely however on the assumption that the equili-
bration dynamics of the lateral position is fast compared
to longitudinal motion, which unavoidably leads to a lim-
ited range of validity. It has been recognized that the
case of abrupt changes of channel radius requires an im-
provement the one-dimensional description at the cost
of employing more sophisticated methods [26, 35, 36].
A different picture, in principle valid for channels con-
stituted of pores separated by narrow necks, relies on
the assumption that the motion is controlled by the first
passage events of tracer particles between pores. Calcu-
lations of effective diffusivities that rely on first passage
time (FPT) arguments have been so far restricted to par-
ticular simplified geometries, such as sinusoidal channels
[37], septate channels (made of perfectly cylindrical con-
nected cavities) [38, 39], or channels formed by overlap-
ping circles [40] or spheres [41]. In general however, the
regimes of validity of FJ-like approximations and FPT-
approaches are different, and it is therefore difficult to
describe the transition between these regimes (except for
the sinusoidal channel [37]).

In the present paper, we revisit theoretically the prob-
lem of dispersion in two and three dimensional axisym-
metric channels of arbitrary shape. Our approach uses
an exact formula of the effective diffusivity, expressed in
terms of an auxiliary function that satisfies a set of partial
differential equation at the scale of a single period, which
we analyze using singular perturbation analysis and con-
formal mapping techniques. We systematically identify
all the (exact) asymptotic scaling regimes of diffusivity
and the accompanying physical mechanisms that control
dispersion. In many cases, especially the case of highly
corrugated channels, the dispersion coefficient is found
to depend on only a few quantities related to the chan-
nel geometry rather than on the full details of its shape.
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FIG. 1. Schematic of a two dimensional channel of local width
2R(z), or slice of an axisymmetric channel in three dimensions
of local radius R(z). The complete channel is formed by the
periodic repetition of this motif.

We show how the identification of regimes far outside the
validity of the one-dimensional effective description can
lead to an accurate description of the effective diffusivity
for a wide range of parameters, via a Padé approximant.
We identify the regimes in which De is linked to FPT
problems. We also show that, depending on the behavior
of the radius near the neck, we can classify channels into
smoothly and highly corrugated ones, for which the effec-
tive diffusivity displays qualitatively different behaviors.

II. CHANNEL GEOMETRY AND GENERAL
EQUATIONS FOR THE EFFECTIVE

DIFFUSIVITY

We consider here the problem of the diffusion of an
overdamped particle, of microscopic diffusivity D0, in a
two or three dimensional axisymmetric channel (Fig. 1),
assumed to be periodic with period L. We denote by
z the (longitudinal) position in the direction parallel to
the channel axis, and we assume that the channel radius
R(z) is parametrized as

R(z) = a+Hg(z/L), (1)

where a is the minimal channel radius, H is the ampli-
tude of variation of the channel radius, and g is a dimen-
sionless periodic function of period 1 which describes the
geometrical shape of the channel boundaries, chosen to
have a maximal value equal to 1 and a minimal value 0.
We define the dimensionless parameters, which we will
see determine the various modes of dispersion,

ξ ≡ H/a, ε ≡ a/L. (2)

Channels of uniform width thus correspond to ξ = 0,
while ξ is large for highly corrugated ones. The limit of
weakly varying channels thus correspond to ε → 0 (at
fixed ξ). Finally we denote by Ω the unit periodic cell,
and we call V its volume.

We aim to characterize the long time effec-
tive diffusion coefficient of tracer particles De ≡

lim
t→∞

[z(t)− z(0)]2/(2t), where the overbar denotes ensem-

ble average. The starting point of our analysis is the
following exact expression:

De = D0

(
1 +

(d− 1)〈fS Rd−2 ∂zR〉
〈Rd−1〉

)
, (3)

where the notation 〈w〉 =
∫ L

0
dzw(z)/L is used for the

uniform average over one period for any function w, d is
the spatial dimension (d = 2 or 3), and De is expressed
in terms of an auxiliary function fS(z) ≡ f(r = R(z), z),
where f(r, z) satisfies

∂2
zf + r2−d∂r[r

d−2∂rf ] = 0, (4)

[(∂zR)∂zf − ∂rf ]r=R(z) = ∂zR, (5)

f(r, z + L) = f(r, z) ; ∂rf |r=0 = 0, (6)

where r is the distance to the central axis. These equa-
tions (3)-(6) are a particular case of the general descrip-
tion of dispersion in arbitrary periodic systems intro-
duced in Refs. [11, 42], they are also compatible with the
equations of the macrotransport theory of Brenner and
Edwards [12]. They express the macroscopic diffusion
coefficient De as a function of the microscopic structure
of the channel, at the scale of one single period. Such
a system of partial differential equations can be readily
integrated numerically by using standard finite element
solvers, leading to the curves presented in Figs. 2 and 3
for various channels. De is represented as a function of
ε = a/L for different values of the corrugation parameter
ξ. These curves clearly display two plateaus separated by
an intermediate regime; we will now study these asymp-
totic regimes analytically.

III. SLOWLY VARYING CHANNELS (ε→ 0)

The first limiting case to consider is that of a slowly
varying channel, which here corresponds to the limit
ε → 0, a limit in which the FJ approximation ap-
plies since equilibration in the perpendicular direction
is much faster than in the longitudinal direction. At
leading order, a tracer particle exhibits the effectively
one-dimensional dynamics of a Brownian particle z(t)
with diffusion coefficient D0 advected by the potential
φ(z) = −kBT ln(Rd−1(z)). Here, the Lifson-Jackson for-
mula [32] provides an estimate for the effective diffusion
coefficient De:

De =
ε→0

D0

〈(1 + ξg)d−1〉〈(1 + ξg)1−d〉 ≡ DFJ (7)

This well known expression clearly shows (from Jensen’s
inequality) that the effective diffusivity De is reduced
compared to the microscopic diffusion coefficient D0, it is
furthermore independent (at leading order) of the chan-
nel period L. This estimate can be recovered from the
equation for f by a standard perturbation theory in ε
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FIG. 2. (color online) Effective diffusivity for the bidimen-
sional channel of radius R(z) = a{1/2 + 0.266[cos(2πz/L) +
sin(6πz/L)]} for small (a) and finite (b) values of ε. The
channel shape is represented in inset. On both plots, disks
represent the numerical values of De/D0 obtained by solving
Eqs. (3)-(6), and continuous lines correspond to the Padé ap-
proximant (14). In (a), the first orders of the expansion of De
in powers of ε, obtained from Refs. [23, 43], are represented.
In (b), we also represent the results obtained by using one-
dimensional re-summed formulas for the local diffusivity D(z)
proposed by Zwanzig (Zw) [21], Reguera and Rubi (RR) [22]
and Kalinay and Percus (KP) [23].
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FIG. 3. (color online) Effective diffusivity De for channels
of sinusoidal shape g(u) = [1 + cos(2πu)]/2 in two dimen-
sions (a) and three dimensions (b), and ellipsoidal shape
g(u) =

√
1− 4u2 in two dimensions (c) and three dimensions

(d). Disks represent the numerical solution of Eqs. (3)-(6),
continuous lines correspond to the Padé approximant (14).
Dashed lines represent the various asymptotic regimes: FJ
expression (7) for ε → 0, wide channel limit (8) for ε → ∞
and narrow escape regime (21) for intermediate ε (the value
κ = 2/π, valid for H � L, was used).

for d = 2 [43], and we show in the appendix A how to
generalize to d = 3.

Several works have attempted to improve this estimate,
using various approaches. The most obvious one consists
of calculating more terms in the expansion in ε: this has
been done by assuming that the dynamics for z(t) can be
described by a Markovian one, with a position dependent
local diffusivity D(z). Perturbation expansions for D(z)

have been proposed 1 which have been found to be con-
sistent with the expansion of the macrostransport theory
performed up to order ε4 [43]. However, such series in
powers of ε fail to describe the numerical curve as soon as
ε is not small (see Fig. 2), for the obvious reason that at
large ε the curve should reach a plateau instead of being
polynomial. The use of Padé approximants is a standard
way to enforce a series expansion to have a constant limit
at large ε, while retaining precision for small ε: it con-
sists of writing De =

∑q
n=1 anε

n/
∑p
n=1 bnε

n, with p = q
in order to ensure a finite limit for large ε, while the coef-
ficients an, bn are chosen to be consistent with the small
ε expansion. We have tried this procedure, but we con-
cluded that it does not lead to accurate results, as the
plateau at large ε is not predicted correctly.

Other approaches [21–23] have considered different
choices of D(z), obtained by partial re-summation tech-
niques, and leading to alternative estimates of De. How-
ever it is seen on Fig. 2 that none of these re-summations
correctly estimate De for finite values of ε, and it is also
known that they are not consistent with exact small ε
expansion [43]. Therefore, FJ-like approaches are, by
construction, not likely to be able to estimate De for fi-
nite values of ε, which is why we focus on the opposite
limit, ε→∞ of fast varying channels.

IV. THE LIMIT OF WIDE CHANNELS (ε→∞)

In the limit of wide channels, where a,H � L, the
diffusivity at leading order can be deduced as follows.
At the time scale τ ∼ L2/D0, particles at r < a can be
considered to diffuse freely in the longitudinal direction,
while particles at r > a can be considered as immobile.
We can thus estimate the mean square displacement dur-
ing a time t to be z2(t) = 2D0Tc(t), where Tc(t) is the
time spent in the region r < a up to time t. Ergodic-
ity implies that Tc(t)/t is also the ratio of the volume of
the region r < a to the total volume of the periodic cell,
which leads to

De = D0
ad−1

〈(a+Hg)d−1〉 . (8)

This expression is the same as that found in comb-like
geometries [44, 45] or tubes with dead-end regions [46]
in simplified geometries. However, this argument should
hold only for infinitely thin dead-end regions, and it does
not take into account tracer particles that cross the hy-
persurface r = a, and corresponding corrections to the
effective diffusivity are not easy to estimate. In what
follows we carry out a quantitative analysis of the exact
equations (4) in the large ε limit.

1 In Ref. [23] an anisotropy of the microscopic diffusion tensor is
considered, and the small parameter of the perturbation expan-
sion is the ratio D‖/D⊥; expansions in powers of ε or of this
small parameter are equivalent.
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In order to construct the auxiliary function f in the
limit of wide channels ε → ∞, it is convenient to use
rescaled variables, z̃ = z/L and r̃ = r/a, in which case
the variation range of variables z̃, r̃ is independent on ε.
At leading order in ε, the resulting equation (4) for f(r̃, z̃)
becomes ∂2

z̃f = 0, which, using the boundary conditions
(5) and (6) leads to solutions of the form

f(r̃, z̃) = z̃ θ(r̃ − 1)L+ b(r̃) (9)

where θ is the Heaviside function and b(r̃) is an unde-
termined function of r̃. The above solution for f is not
satisfactory because it is not continuous at r̃ = 1. This is
the signal of the presence of a boundary-layer near r = a.
The size of the boundary layer for the lateral variable r
is found by inspection to be L: it corresponds to the re-
gion in which tracer particles can cross the line r = a
in the time L2/D0 needed by tracer particles to reach a
neighboring pore. It is now useful to write r = a + ηL,
in which case the equation (4) becomes at leading order
in ε

∂2
ηf + ∂2

z̃f = 0 (10){
∂z̃f |z̃=±1/2 = L (η > 0)

f(η, z̃ = 1/2) = f(η, z̃ = −1/2) (η < 0)
(11)

(note that this equation holds in dimensions 2 and 3).
Furthermore, to match with the outer solution (9), f
must behave as f ' b(1) + z̃L for η → ∞, and f must
be constant for η → −∞. This problem can now be
handled by the use of complex analysis: we look for a
solution f = Re(w(Z)), where w is an analytic function
of the complex variable Z = z̃ + iη. If we make the
transformation Z1 = ieiπZ , the problem becomes equiv-
alent to the two-dimensional electrostatic problem con-
sisting of finding the potential generated by two perfectly
conducting neighboring horizontal plates, being located
between (±1, 0) and (±∞, 0), on which opposite values
of the potential is imposed. The solution of this problem
can be constructed using a Schwarz-Christoffel transform
(see appendix C), and we find

f = Re

[
iL

π
ln
(

1 +
√

1 + e−2πiz̃+2πη
)]

+ b(1), (12)

where Re(...) represents the real part of a complex num-
ber. It can be checked that the above formula satisfies
the boundary conditions (11) and matches with the outer
solution (9) when one takes η → ±∞. Inserting this for-
mula into Eq. (3) yields

De =
ε→∞

D0
ad−1

〈(a+Hg)d−1〉

(
1 +

(d− 1) ln 2

πε

)
, (13)

where the ε−1 correction comes from the contribution of
f in the boundary layer. These corrections, which quan-
tify the contribution to dispersion of the particles that
can cross the line separating the blocked region from the
regions of free longitudinal move, do not depend on the
details of the channel geometry: they are characterized
by a universal numerical constant equal to ln 2/π.

V. AN APPROXIMANT INCLUDING BOTH
NARROW AND WIDE CHANNEL LIMITS

At this stage, we can construct a Padé type approxi-
mant for De,

De = DFJ
1 + a1ε+ a2ε

2 + a3ε
3

1 + b1ε+ b2ε2 + b3ε3
, (14)

where the coefficients ai, bi are carefully chosen to ensure
that the expression for De is exact for both the wide
channel limit ε → ∞ (up to order ε−1, using Eq. (13))
and the slowly varying channel limit ε→ 0 (up to order
ε4, for which we used expressions in the literature [43]),
shown in appendix B). This approximant incorporates
effects that cannot be captured by FJ-like approaches,
and is found to agree with the numerical curve for almost
all values of ε (see Figs. 2 and 3). We therefore emphasize
that the strength of our approach is that it allows an
accurate description of De which ranges from narrow to
wide channels.

VI. THE FJ APPROXIMATION FOR HIGHLY
CORRUGATED CHANNELS

We now proceed to simplifying the description of the
mechanisms controlling dispersion in the limit of large
ratio ξ = H/a of maximum width over minimal aper-
ture. Consider first the large ξ limit of the FJ expression.
The result of taking ξ → ∞ in Eq. (7) depends on the
existence of the integral

∫
dz/gd−1(z), which may be a

divergent one (because g vanishes for some value of z).
We now assume that the behavior of R near the point of
minimal aperture (here taken as the origin of longitudinal
axis) is characterized by

R(z → 0) ' a+ γ|z|ν (15)

where γ is a quantity that characterizes the local geome-
try of the narrowest region of the channel. For example,
differentiable channel profiles correspond to ν = 2, in
which case γ is half the minimal curvature at the neck.
If the neck is composed of connected conical portions (so
ν = 1), arctan(γ) is half the opening angle of these cones.
The assumption (15) is equivalent to

g(z̃ → 0) ' A|z̃|ν ; γ = AH/Lν (16)

If we define νc(d) = 1/(d− 1), we see that the integral of
1/gd−1 is infinite when ν > νc. In this case the dominant

contribution in the integral J ≡
∫ 1

0
dz̃/(1 + ξg(z̃))d−1

comes from the values of z close from the points of small-
est channel width, so that J '

∫∞
−∞ dz̃/(1 + ξA|z̃|ν)d−1

(where we can replace the integration bounds by ±∞
without changing the integration result at leading order).
Computing this integral leads to

DFJ

D0
' ν sin(π/ν)(Aξ)1/ν

2π ξd−1〈gd−1〉

(
ν

ν − 1

)d−2

, (17)
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which can also be written as

DFJ ' L2/(2T ), (18)

with

T =
V

D0ad−1−1/νγ1/ν
× π

2ν sin(π/ν)

(
2(ν − 1)

πν

)d−2

.

(19)

We can interpret T as the mean first time to reach the
middle of one of the narrow regions, while the other is
reflecting. The time T does not depend on the precise
geometric details of the channel shape: it depends only
on the volume V of a single pore, on the minimal channel
radius a and on the parameter γ which characterizes the
geometry of the channel near the neck. In this regime,
the stochastic trajectories of the tracer particles can be
viewed as a continuous time random walk, where the par-
ticles spend in each pore an average time T/2 which mea-
sures the rate at which the tracer particles can escape the
entropic barriers formed by the narrow regions. Eq. (17)
is known in the case ν = d = 2 [47, 48]. The mean es-
cape time T to an opening at the end of a funnel has
recently been calculated using conformal mapping tech-
niques [19, 49–51] for ν = 2 and d = 2, 3 and coincides
with the above formula 2, it is interesting to see that
these mean escape times are also accessible via the FJ
approximation. The general formula (19) for T for any
exponent ν is new to the best of our knowledge.

An important remark here is that De is controlled by
the time to cross the neck regions: as a consequence,
Eq. (17) holds as soon as the FJ approximation is a cor-
rect description of the dynamics in the neck only rather
than in the whole channel. The relevant longitudinal
length scale l∗ in the neck is identified from a ∼ γ(l∗)ν , so
that l∗ ∼ (a/γ)1/ν ; the FJ approximation is valid when
l∗ � a, a condition which is less constraining (for ν > 1)
than the condition H � L which would be required for
the FJ approximation to hold in the whole channel.

Thus, if ν > νc, the dispersion in the limit of slowly
varying channels is controlled by the geometry at the
neck. The situation is completely different in the case
ν < νc for which the large ξ limit of DFJ reads

DFJ =
D0

〈gd−1〉〈g1−d〉 (20)

In this case, the effective diffusivity depends on the chan-
nel’s geometrical shape, but not on any of the parameters
a, L,H. This is a key difference between channels with
sharp necks (ν < νc) or smooth necks (ν > νc): dis-
persion in sharp neck channels is not controlled by the

2 Note that, for d = 3 and ν = 2, Eq. (17) is half the result given
in Refs. [19, 50]. It is mentioned in Ref. [51] that a correction
factor of one half should be added, but misprints in the definition
of R and a render difficult the comparison with (17

diffusion at the neck only. Interestingly, the case ν = 1
in d = 3 dimensions is included in the regime ν > νc
and corresponds to a regime where the dynamics at the
neck controls the transitions between pores and thus the
dispersion.

VII. INTERMEDIATE REGIME OF
DISPERSION

We finally study the regime that is intermediate be-
tween the limits of small and large ε. It is seen on Fig. 3
that this intermediate regime tends to increase with in-
creasing ξ, and also tends to deviate from the predictions
of our Padé approximant. This suggests the presence of a
different mechanism that controls dispersion. We treated
this case by performing a singular perturbation analysis
of Eq. (4)-(6) in the limit of small pore opening by follow-
ing closely the approach of Refs. [52, 53] (see appendix
D for details). We obtain

De '
L2D0

V
×
{

2a (d = 3)
π

2 ln(2Lκ/a) (d = 2)
(21)

where κ is a constant that depends on the ratio H/L
and on the shape of the boundary; more precisely lnκ =
[R(r0, r0) + R(r1, r1) − 2G(r0, r1)]π/2, where G is the
pseudo-Green’s function of the domain (without open-
ing), R is the non-diverging part of this Green’s function
and r0, r1 are the positions of the openings. In the limit
H � L, κ reaches a constant value deduced from the
Green’s function in an infinite strip [54], κ = 2/π. The
above formula reveals that in this intermediate regime
one can again interpret the stochastic trajectories as con-
tinuous time random walks, with a dispersion coefficient
satisfying the relation (18), De = L2/(2T ). In 3 di-
mensions, T is, not surprisingly, the mean escape time
through a small opening embedded in a flat plane, which
does not depend on the initial position of the walker,
due to the non-compact feature of space exploration by
a Brownian walker in 3D [6, 55]. In 2D the situation is
slightly different, because Brownian search for an opening
is only marginally compact, and mean escape times de-
pend logarithmically on the initial position [6, 55]. Com-
paring Eq. (21) with recent calculations of the mean es-
cape time in 2D domains of arbitrary shape [53] reveals
that De = L2/(2T ), where T is not the global mean
first passage time to a pore, but is instead the time to
reach a pore, starting from the opposing opening (consid-
ered as reflecting). The above formula has been identified
for particular geometries such as septate channels in 3D
[38] and for channels made of overlapping spheres [41], it
has already proposed for the corresponding cases in 2D
[39, 40] but at leading order only.

We obtained the formula (21) rigorously from (3) in the
limit of small pore opening in the case ν ≤ 1, but one can
see from Fig. 3 that is actually gives a good description
of De in the intermediate regime for large ξ for arbitrary
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FIG. 4. Diagram (ε, ξ) summarizing the asymptotic estimates
of De and their validity regimes for ν > νc (a) and ν ≤ νc (b),
with νc = 1/(d− 1). In the Fick-Jacobs (FJ), Narrow-Escape
(NE) and Wide-Channel (WC) domains, the equations (7),
(21) and (8) are respectively correct. In the limit ξ → 0, the
effective diffusivity goes to D0 for both FJ and WC limits.
When ν > νc, the FJ expression for large ξ corresponds to
a regime where dispersion is controlled by events of narrow
escape through a funnel (NEF).

geometries for any channel shape, be it smooth or not. It
is therefore not limited to compartmentalized channels.
This can be understood by noting that the large ξ limit
implies that the boundaries become more and more per-
pendicular to the channel axis near the channel necks,
and one therefore recovers the conditions of the narrow
escape problem at a domain boundary.

We end our study by drawing qualitative diagrams
where the asymptotic expressions for De are summarized,
together with their validity domains. Each regime cor-
responds to a different physical mechanism that controls
the behavior of the stochastic trajectories and thus dis-
persion. We stress that our approach, based on the exact
expression (3) for De, enables to obtain all the asymp-
totic regimes.

VIII. CONCLUSION

Let us now summarize our findings. Here we have re-
visited the problem of computing the effective diffusivity
of tracer particles in corrugated axisymmetric two and
three dimensional channels. We have classified the chan-
nels into two categories: smooth channels, characterized
by an exponent ν > 1/(d − 1), for which the FJ dis-
persion becomes controlled by the crossing of a funnel at
the necks, which we computed for any ν, and non-smooth
channels, with ν < 1/(d− 1), for which the effective dif-
fusivity in the FJ regime becomes independent on the
parameters H,L, a in the strong corrugation limit. We
also identified two supplementary regimes, common to all
channel geometries: a comb-like regime for wide chan-
nels, where we quantified the influence on dispersion of
the probability of crossing the frontier between the slow
and fast regions, and an intermediate regime controlled
by the standard narrow escape problem. We have also
proposed a Padé type approximant for De, which accu-
rately describes the effective diffusivity for a wide class of

parameters between the limits of narrow and wide chan-
nels. This study thus provides a refined understanding of
how dispersion properties are controlled by the geometry
of the channel.

SUPPLEMENTARY INFORMATION

Appendix A: Slowly varying channels: derivation of
the FJ formula from Eqs. (3)-(6) of the main text

Here we briefly describe the derivation of the effective
diffusivity at leading order in the FJ regime (ε → 0),
starting directly from the Kubo equations for the auxil-
liary function f [Eqs. (3)-(6) of the main text]. We define

the rescaled variables r̃ = r/ε and R̃(z) = R(z)/ε. The
function f satisfies the equation

ε2∂2
zf + r̃2−d∂r̃[r̃

d−2∂r̃f ] = 0 (A1)

[(ε2∂zR̃)∂zf − ∂r̃f ]r̃=R̃(z) = ε2∂zR̃, (A2)

f(r̃, z + L) = f(r̃, z) ; ∂r̃f |r̃=0 = 0. (A3)

We expand f in powers of ε2, i.e. f(r̃, z) = f0(r̃, z) +
ε2f2(r̃, z) + ..., and find at leading order,

r̃2−d∂r̃[r̃
d−2∂r̃f0] = 0 (A4)

∂r̃f0|r̃=R̃(z) = 0, (A5)

f0(r̃, z + L) = f0(r̃, z) ; ∂r̃f0|r̃=0 = 0. (A6)

These equations impose that f0 does not depend on r̃,
f0(r̃, z) = f0(z). The equations at second order yield

∂2
zf0 + r̃2−d∂r̃[r̃

d−2∂r̃f2] = 0 (A7)

[(∂zR̃)∂zf0 − ∂r̃f2]r̃=R̃(z) = ∂zR̃, (A8)

f2(r̃, z + L) = f2(r̃, z) ; ∂r̃f2|r̃=0 = 0. (A9)

The solution of Eq. (A7) obeys ∂r̃f2 = −f ′′0 (z) r̃
d−1 . In-

serting this expression into Eq. (A8) yields

(d− 1)R̃′f ′0 + f ′′0 R̃ = (d− 1)R̃′. (A10)

The solution of the above equation which takes into ac-
count the periodicity of f0 obeys

f ′0(z) = 1− 〈R̃
1−d〉−1

R̃d−1
. (A11)
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At leading order the effective diffusivity is thus given by

De

D0
= 1 + (d− 1)

〈R′(z)R(z)d−2f0(z)〉
〈Rd−1〉 +O(ε2)

= 1− 〈R̃
d−1f ′0(z)〉
〈R̃d−1〉

+O(ε2) (A12)

=
1

〈R̃d−1〉〈R̃1−d〉
+O(ε2),

thus recovering the Fick-Jacobs’ result [20] for the effec-
tive diffusivity at leading order in ε.

Appendix B: Coefficients for the Padé formula for
the effective diffusivity

We propose in the main text to approximate the effec-
tive diffusivity by the Padé formula

De = DFJ
1 + a1ε+ a2ε

2 + a3ε
3

1 + b1ε+ b2ε2 + b3ε3
, (B1)

where the coefficients ai, bi are chosen to ensure that the
expression for De is asymptotically exact for both the
narrow (ε→ 0) and wide channel (ε→∞) limits. More
precisely, assuming that De = D∞[1 +α/ε+O(ε−2)] for
large ε, and that De = DFJ[1 + λ2ε

2 + λ4ε
4 +O(ε6)] for

small ε, and denoting K = D∞/DFJ, the coefficients are

a1 = b1 =
[λ2

2 + λ4(K − 1)](K − 1)

λ2
2Kα

a2 = λ2 −
λ4

λ2
; b2 = −λ4

λ2
(B2)

a3 = Kb3 =
λ2

2 + λ4(K − 1)

λ2α

The value of D∞ and α are identified from Eq. (13) in
the main text. The values of the λi are explicitly found
as follows. We consider the small ε expansion of the
local diffusivity D1d(z) in an effective one-dimensional
description [23]

D1d

D0
={

1− ε2

3 R̃
′2 + ε4

45 (9R̃′4 + R̃R̃′2R̃′′ − R̃2R̃′R̃′′′) (d = 2)

1− ε2

2 R̃
′2 + ε4

48 (18R̃′4 + 3R̃R̃′2R̃′′ − R̃2R̃′R̃′′′) (d = 3)

(B3)

where R̃ = R/ε. This formula can be inserted inserted
into the Lifson - Jackson formula [32]

De

D0
=

1

〈R̃d−1〉〈(D1dR̃d−1)−1〉
, (B4)

to finally give

De

D0
=


1

〈R̃〉〈R̃−1〉

{
1− ε2

3
〈R̃′2/R̃〉
〈R̃−1〉 + ε4

[
〈R̃′2/R̃〉2

9〈R̃−1〉2 + 4〈R̃′4/R̃〉+〈R̃R̃′′2〉
45〈R̃−1〉

]
+O(ε6)

}
(d = 2)

1
〈R̃2〉〈R̃−2〉

{
1− ε2

2
〈R̃′2/R̃2〉
〈R̃−2〉 + ε4

[
〈R̃′2/R̃2〉2

4〈R̃−2〉2 + 7〈R̃′4/R̃2〉+〈R̃′′〉
48〈R̃−2〉

]
+O(ε6)

}
(d = 3)

(B5)

from which the coefficients λi can be read off. The above
expansion of De was validated for d = 2 in Ref. [43],
and can also be found by iterating the approach of the
previous section.

In the case of channels for which R′ can be infinite the
expansion (B5) fails as it predicts an infinite coefficient
even for the ε2 term. In this case, we used the following
lower-order Padé approximant,

De = DFJ
1 + a1ε

1 + b1ε

a1 =
(DFJ −D∞)π

DFJ(d− 1) ln 2
; b1 =

(DFJ −D∞)π

D∞(d− 1) ln 2
. (B6)

We used this Padé approximant for channels with elliptic
boundaries in Fig. 3(c) and Fig. 3(d) in the main text.

Appendix C: The limit of wide channels [Derivation
of Eq. (13) in the main text]

In the limit of wide channels a,H � L, we can
solve the Kubo formulas using complex analysis. In the
boundary-layer coordinates (η, z̃) defined by r = a + ηL
and z = z̃L, the function f(η, z̃) satisfies the Laplace
equation ∂2

z̃f + ∂2
ηf = 0. Defining the complex variable

Z = z̃+iη, the solution of this equation can be written as
f(η, z̃) = Re(w(Z)) where w(Z) is an analytic function.
Moreover, the boundary conditions ∂z̃f |z̃=±1/2 = L for
η > 0 and f(η, z̃ = 1/2) = f(η, z̃ = −1/2) for η < 0
imposes the condition on Φ(Z) = w(Z) − ZL − b(1) =
φ(η, z̃)+ iψ(η, z̃), due to the Cauchy-Riemann equations,
as ψ(η, z̃ = ±L/2) = ψ0 for η > 0 and φ(η, z̃ = ±L/2) =
∓L/2 for η < 0 (see Fig. 5(a)).

If we make the conformal mapping Z1 = g(Z) = ieiπZ ,
the problem becomes equivalent to a two-dimensional
electrostatic problem for two conducting horizontal
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(a) (b) (c)

Z1=g(Z) Z2=h(Z1)

FIG. 5. (a) Domain in the boundary-layer, for the complex
variable Z = z̃+iη. (b) The same domain after the conformal
mapping Z1 = g(Z) = ieiπZ . (c) The same domain after the
Schwarz-Christoffel transformation Z2 = h(Z1) = arcsinZ1.

plates of opposite potential, located at Im(Z1) = 0 and
|Re(Z1)| > 1 (see Fig. 5(b)). The solution of this problem
can be constructed via a Schwarz-Christoffel transforma-
tion h(Z1) (see Fig. 5(c)) defined by

dh

dz
(Z1) =

A

(Z1 − 1)1/2(Z1 + 1)1/2
=

A√
Z2

1 − 1
. (C1)

This equation can be integrated to yield h(Z1) =
A arcsinZ1 + B, where A,B are fixed by the relation
h(±1) = ±π/2. This finally gives h(Z1) = arcsinZ1.
Defining the new coordinate in the new space as Z2 =
h(Z1), we can express the solution Φ(Z2) of the Laplace

equation as a linear function of Z2, where ψ0 is chosen
to be zero,

Φ(Z2) = −L
2

+
L

π

(
Z2 +

π

2

)
=
LZ2

π
. (C2)

In terms of the original coordinates we have

Φ(Z) =
L

π
arcsin

(
ieiπZ

)
=
iL

π
ln
(
eiπZ +

√
1 + e2iπZ

)
,

(C3)
and thus the function f(η, z̃) is given by

f(η, z̃) = Re

[
ZL+

iL

π
ln
(
eiπZ +

√
1 + e2iπZ

)]
+ b(1)

= Re

[
iL

π
ln
(

1 +
√

1 + e−2iπz̃+2πη
)]

+ b(1),

(C4)

which is Eq. (12) in the main text.
The effective diffusivity is now calculated from the ex-

pression

De

D0
= 1 + (d− 1)

〈R′Rd−2fS〉
〈Rd−1〉 (C5)

where 〈w〉 =
∫ L/2
−L/2 w(z)dz/L, and fS(z) = f(R(z), z).

This equation can also be written as

De

D0
= 1 + (d− 1)

〈R′Rd−2[z + b(R̃)]〉
〈Rd−1〉 + (d− 1)

〈R′Rd−2(fS − z − b(R̃))〉
〈Rd−1〉

= 1 +
〈(Rd−1)′z〉
〈Rd−1〉 +

(d− 1)

L〈Rd−1〉

∫ L/2

−L/2
dzR′(z)R(z)d−2(fS(z)− z − b(R̃)). (C6)

The integrand in the last integral vanishes for all z that are not close to z = ±L/2 (the minima of g), the corresponding
integral can thus be calculated using the value of f in the boundary layer near z = ±L/2. Using the boundary-layer
coordinates such that dzR′(z) ∼ dr = dηL, R(z) ∼ a and fS(z) = f(η, z = ±L/2), and performing an integration by
parts on the outer integral one obtains

De

D0
=

ad−1

〈Rd−1〉 +
(d− 1)ad−2

〈Rd−1〉

{∫ ∞
0

dη[f(η, z)− z − b(1)]z=−L/2 +

∫ 0

∞
dη[f(η, z)− z − b(1)]z=L/2

}
. (C7)

Using Eq. (C4) to calculate f(η, z) − z − b(1) in the
boundary-layer, we find

[f(η, z)− z − b(1)]|z=±L/2 = ∓L
π

arcsin e−πη, (C8)

from which we finally obtain Eq. (13) of the letter,

De

D0
=

ad−1

〈Rd−1〉 +
2(d− 1)ad−2L

π〈Rd−1〉

∫ ∞
0

dη arcsin e−πη

=
ad−1

〈Rd−1〉

[
1 +

(d− 1) ln 2

πε

]
. (C9)

Appendix D: Intermediate regime of dispersion in
2D domains [Derivation of Eq. (21) in the main text]

Here we identify the diffusivity in the limit of narrow
openings, which turns out to be the regime of dispersion
for intermediate values of ε and highly corrugated chan-
nels [Eq. (21) in the main text]. We follow closely the sin-
gular expansion approach of Ref. [53] where the narrow
escape problem through various openings was considered;
here however we do not assume any link between the ef-
fective diffusivity and the first passage problems and we
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start directly from the Kubo equations for f , which read
for a 2D channel

∂2
zf(r) + ∂2

rf(r) = 0, r ∈ Ω, (D1)

~n · ~∇f(r) = nz, r ∈ ∂Ωout, (D2)

f(r, z + L) = f(r, z), r ∈ ∂Ωin, (D3)∫
Ω

drdzf(r) = 0, (D4)

where r = (r, z). ∂Ω represents the full boundary of the
elementary periodically repeated pore, ∂Ωout is the reflec-
tive boundary of ∂Ω and ∂Ωin is the periodic boundary
(corresponding to small opening) of ∂Ω. If the opening
does not exist (a = 0 or equivalently ε = 0 ), the bound-
ary condition (D3) no longer applies (as Ωin = ∅) and the
solution is given by f(r) = z (up to an unimportant addi-
tive constant). For non-vanishing opening, this solution
is not valid near the pore openings, since the boundary
condition (D3) is no longer satisfied. We thus add a small
opening pertubatively, following the approach of [52, 53],
and write the expansion of f far from the pore openings
(outer expansion) as

f(r, ε) = f0(r) + ν1(ε)f1(r) + ν2(ε)f2(r) + ..., (D5)

where 1 � νi(ε) � νi+1(ε) � · · · . The function fi(r)
(i 6= 0) satisfies the equations

∂2
zfi + ∂2

rfi = 0, r ∈ Ω (D6)

~n · ~∇fi = 0, r ∈ ∂Ωout (D7)∫
Ω

drfi(r) = 0 (D8)

Close to the openings located at r = r± ≡ (0,±L/2), we
make the change of variable r̃ ≡ (r − r±)/a, which are
both equivalent due to the periodic boundary condition
(D3), and take the inner expansion of f such that

f(r, ε) = v(r̃, ε) = µ0(ε)v0(r̃)+µ1(ε)v1(r̃)+µ2(ε)v2(r̃)+...,
(D9)

and we write the matching condition

µ0(ε)v0(r̃) + µ1(ε)v1(r̃) + ... ∼ f0(r) + ν1(ε)f1(r) + ...,
(D10)

in the domain where r̃ · ez → ±∞ and r → r∓. The
function vi(r̃, z̃) satisfies the equations

∂2
z̃vi(r̃) + ∂2

r̃vi(r̃) = 0, r̃ ∈ Ω̃ (D11)

∂z̃vi(r̃) = 0, r̃ ∈ ∂Ω̃out. (D12)

(note that here we assume the channel boundary to be
flat near the opening, we do not consider any corrections
linked to finite values of the channel curvature near the
pore). In terms of elliptic coordinates, defined as

r̃ = coshµ cos ν , z̃ = sinhµ sin ν, (D13)

Laplace’s equation becomes ∂2
µvi + ∂2

νvi = 0, with the

additional boundary condition ∂νvi = 0 on ∂Ω̃out. We

now look for solutions that are independent of ν, leading
to

vi(µ) = Aiµ+Bi. (D14)

where the constants Ai, Bi will be identified using the
matching condition. In the limit µ → ±∞, we obtain
the behavior

vi(r̃) ∼
|̃r|→∞,r→r∓

±Ai ln 2|r̃|+Bi

∼ ±Ai ln
2L

a
±Ai ln

|r− r∓|
L

+Bi. (D15)

From the matching condition (D10), we then find A0 =
−L/2, B0 = 0, and

µ0(ε) = −[ln(ε/2)]−1 = ν1(ε), (D16)

f1(r) ∼
r→r±

∓A0 ln
|r− r±|

L
. (D17)

We need the expression for f1(r) to find the second
asymptotic term. To do this we assume that

f1(r) ∼
r→r±

∓A0 ln
|r− r±|

L
+ C±. (D18)

From the matching condition (D10), we choose C± =
∓A1, B1 = 0 and

µ1(ε) = [ln(ε/2)]−2. (D19)

Following [53], we introduce the pseudo-Green function
G(r, r±) defined via

∂2
zG+ ∂2

rG =
1

|Ω| , r ∈ Ω (D20)

~n · ~∇G = 0, r ∈ ∂Ωout (D21)

G(r, r±) ∼
r→r±

− 1

π
ln
|r− r±|

L
+R(r±, r±) (D22)∫

Ω

G(r, r±)dr = 0. (D23)

The solution of f1(r) is thus given by

f1(r) = −πA0 [G(r, r−)−G(r, r+)] + χ. (D24)

Using the behavior of f1 and G(r, r±) close to the open-
ings at r = r− and r = r+, we obtain the system

A1 = −πA0 [R(r−, r−)−G(r−, r+)] + χ, (D25)

−A1 = πA0 [R(r+, r+)−G(r+, r−)] + χ. (D26)

and we finally find

A1 =
πL

4
[R(r−, r−) +R(r+, r+)−G(r−, r+)−G(r+, r−)] .

(D27)
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FIG. 6. Behavior of De/D0 for elliptic channels R(z) = a +
Hg(x/L) where g(u) =

√
1− 4u2, H = 0.1L (a) and H =

100L (b) for small openings. We check Eq. (D33). In the case
H � L, the value of κ is well approximated by the Green’s
function of the infinite strip: κ = 2/π.

We thus have characterized the solution f near the
boundaries between successive pores. The effective diffu-
sivity is, in general, given by

De

D0
= 1− 1

|Ω|

∫
∂Ωout

dSz(r)f(r). (D28)

A few manipulations can be made to express De/D0

as a surface integral over the opening ∂Ωin between
pores. First, we note that, due to the periodicity of
f ,
∫
∂Ωin

dSz(r)f(r) = 0 and the boundary integral in

Eq. (D28) can be extended over the whole surface ∂Ω.
One can then use the divergence theorem to obtain

De

D0
= 1− 1

|Ω|

∫
Ω

dr∇f(r)ez (D29)

Using the divergence theorem once more, we find

De

D0
= 1 +

1

|Ω|

∫
Ω

drz∇2f(r)− 1

|Ω|

∫
∂Ω

dS n z∇f.
(D30)

This expression can be simplified by noting that (i)
∇2f = 0 in the bulk, (ii) n · ∇f = n · ez at the channel
boundary ∂Ωout, and (iii)

∫
∂Ω
dSn · ezz = |Ω|. Hence,

De

D0
=

1

|Ω|

∫
∂Ωin

dSz(r)z − 1

|Ω|

∫
∂Ωin

dSz n · ∇f. (D31)

The above integral can now be evaluated using the value
of f in the opening between pores, Eqs. (D14),(D9), lead-
ing to

De

D0
=

2aL

|Ω| +
πL2

2|Ω|

[
1

ln(2/ε)

+ π
2G(r−, r+)−R(r−, r−)−R(r+, r+)

2 ln(2/ε)2

+O
(

1

ln(2/ε)3

)]
. (D32)

Finally under the assumption V = |Ω| � aL we find

De

D0
' πL2

2V

1

ln(2κ/ε)
, (D33)

where κ is given by lnκ = (π/2)[R(r−, r−)+R(r+, r+)−
2G(r−, r+)].

For channels with H � L, one may use the value of
κ calculated for a domain that has the shape for the
infinite strip z ∈ [−L/2, L/2] and r ∈ [0,∞[, for which
the Green’s function G is given by (see e.g. Ref. [54])

G(r, r±) = − r

2L

− 1

2π
ln

{
4e−

πr
L

[
sinh2 πr

2L
+ sin2 π(z ∓ L/2)

2L

]}
.

(D34)

Using this expression we obtain R(r−, r−) = R(r+, r+) =
− lnπ

π and G(r−, r+) = − ln 2
π , yielding κ = 2/π.

[1] T. Le Borgne, M. Dentz, and E. Villermaux, Phys. Rev.
Lett. 110, 204501 (2013).

[2] M. Dentz, T. Le Borgne, A. Englert, and B. Bijeljic, J.
Contam. Hydrol. 120, 1 (2011).

[3] F. P. Barros, M. Dentz, J. Koch, and W. Nowak, Geo-
phys. Res. Lett. 39 (2012).

[4] J. A. Bernate and G. Drazer, Phys. Rev. Lett. 108,
214501 (2012).

[5] M. L. Brusseau, Rev. Geophys. 32, 285 (1994).
[6] S. Condamin, O. Bénichou, V. Tejedor, R. Voituriez, and

J. Klafter, Nature 450, 77 (2007).
[7] S. Leitmann and T. Franosch, Phys. Rev. Lett. 118,

018001 (2017).
[8] M. Aminian, F. Bernardi, R. Camassa, D. M. Harris, and

R. M. McLaughlin, Science p. 0532 (2016).
[9] P. Haynes and J. Vanneste, J. Fluid Mech. 745, 321

(2014).
[10] A. Tzella and J. Vanneste, Phys. Rev. Lett. 117, 114501

(2016).
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