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We revisit the classic problem of the effective diffusion constant of a Brownian particle

in a square lattice of reflecting impenetrable hard disks. This diffusion constant is

also related to the effective conductivity of non-conducting and infinitely conductive

disks in the same geometry. We show how a recently derived Green’s function for the

periodic lattice can be exploited to derive a series expansion of the diffusion constant

in terms of the disk’s volume fraction ϕ. Secondly we propose a variant of the Fick-

Jacobs approximation to study the large volume fraction limit. This combination of

analytical results is shown to describe the behavior of the diffusion constant for all

volume fractions.
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(a) (b)

FIG. 1. Equivalence of the dispersion of Brownian particles inside an array of obstacles (a) and

the dispersion in a periodic channel (b). From the symmetries of the periodic array of disks, the

dashed lines represented in (a) can be replaced by ghost reflecting boundaries which correspond

to the boundaries of the channel. The same numerical realization of Brownian motion is shown in

both domains.

I. INTRODUCTION

Determining the transport properties of tracer particles in complex media such as colloidal

crystals and suspensions, porous media or living cells is an important and complex physical

problem1–6. In the case of particles diffusing in crowded or confined environments, the

presence of obstacles (which can be seen as entropic traps or barriers) hinders their motion,

leading to a decreased effective diffusivity2,3,7,8. The relation between this diffusivity and

the geometry of the confinement is known to be non-trivial and has interested physicists

over the last few decades3,7,9–12.

A standard, and extensively studied model of dispersion in a complex crowded system is

that of a Brownian tracer particle which diffuses in an environment of fixed hard spheres

(Fig. 1). The late time diffusivity De of a Brownian tracer system is related to the effective

conductivity of a heterogenous medium of fixed non-conducting spheres embedded in a

conducting medium (we recall this result below), and results for this problem can be traced

back to Maxwell13 and Rayleigh14. For example, in the dilute limit where the volume fraction

ϕ of obstacles tends to zero, the calculation of De can be formulated as a Laplace equation

in infinite space, leading to the well known formula13,15,16

De

D0

= 1− ϕ

d− 1
+O(ϕ2) (1)

2



where d is the spatial dimension, D0 the microscopic (local) diffusivity and ϕ the volume

fraction of obstacles. For higher values of ϕ, the above formula is not accurate, and a

partially renormalized formula has been proposed by Kalnin et al.17 who obtained

De

D0

' d− 1

d− 1 + ϕ
. (2)

The above expression turns out to be a much better approximation for the effective diffusivity

in the dilute regime than the leading order expression (1). This resummation is equivalent to

that proposed by Maxwell for the conductivity problem. However, its mathematical status

is rather unclear and only the term first order term in ϕ is strictly exact. It is obtained via

an effective medium approach, assuming spherical symmetry around a single obstacle, with

an effective diffusivity at infinity determined self-consistently and representing the effect of

other obstacles.

In this paper, we show that, for regular square arrays of obstacles, the renormalized ex-

pression (2) is exact up to (and including) the order ϕ4. This explains why the renormalized

formula is accurate up to relatively large volume fractions, around ϕ ' 0.5 in 2D, for such

volume fractions it is rather surprising that a result obtained in the dilute limit should be

relevant. In fact, our approach uses strong localized perturbation theory18 and enables us

to obtain exact analytical expressions for the coefficients of ϕ at all orders. We also show

that the asymptotic expansion of De(ϕ) can be extracted from the literature as the result

of the multipole expansion method, it agrees with our results (derived with a new point of

view). These considerations are the first contribution of the present paper.

Next, in 2D, we will also consider the opposite limit where R approaches the value Rc

(half the square lattice period) at which the obstacles begin to touch each other, leaving only

small openings for the tracer particle to pass to the next pore. In this limit, the diffusivity

vanishes as
√
|Rc −R|. In fact, one can see the 2D problem as equivalent to the problem of

a tracer particle in a channel19 (figure 1b), by adding a ghost reflecting boundary condition

identical to the zero flux condition of the boundary of the channel. For channel geometries,

we can apply well known Fick-Jacobs approximation, which maps the 2D problem onto the

1D problem of a diffusing particle in an effective, entropic, potential. It is known19 that this

approximation can be used to estimate the effective dispersion in the limit R → Rc, and

even improved by introducing effective local diffusion constant D(x) for the effective one

dimensional dynamics20. The second contribution of this paper is to propose an alternative
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expression for the local effective diffusivity D(x) in the effective 1D description:

D(x) ' D0{1− [êx · n(x)]2/3}, (3)

where n is the normal vector to the boundary and êx the unit vector in the direction parallel

to the channel. The above formula can be seen as a natural renormalization of the effective

diffusivity tensor when studying diffusion between two hypersurfaces of arbitrary dimensions,

and is exact at the same order as other expressions of D(x) proposed in the literature11,21,22.

In the limit of nearly touching obstacles, we find that the use of the local diffusivity (3)

leads to an closed form analytical estimate [Eq. (50)] of the effective diffusivity which turns

out to be more accurate than with the use of other choices of D(x) (and which more over

do not have simple closed form expressions).

Taken together, the analytical formulas presented in this work, in the dilute or crowded

regime, provide an accurate description of De in 2D for almost all values of the volume

fraction. The outline of this paper is as follows: in Section II we present a general formalism

to investigate dispersion in heterogeneous media. Then, we investigate the dilute limit

(Section III) employing an exact perturbative approach. Finally we focus on the limit

of nearly touching obstacles (Section IV) within the context of the improved Fick-Jacobs

approximation.

II. DISPERSION IN A REGULAR ARRAY OF SPHERICAL OBSTACLES:

GENERAL FORMALISM

We consider a periodic array of hard spheres with each sphere is taken to be of radius

R and at the centre of an (hyper)-cube of length L. The spheres are impenetrable and we

denote by

Ω = Ld(1− ϕ) (4)

the volume accessible to the tracer in each hypercube. The overall system is constructed by

repeating the underlying cell structure periodically over all space. We consider the motion

of small tracer particles inside this array, with a microscopic diffusivity D0 (see figure 1a)

and we define the late time effective diffusivity, say in the x direction, via

De = Dxx = lim
t→∞

〈[x(t)− x(0)]2〉
2t

, (5)
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where 〈...〉 denotes ensemble average. It is known that this diffusivity can be obtained by

solving a partial differential equation problem for an auxiliary function f , see for example

the macro-transport theory of Brenner and Edwards23, or Refs.24–26 for the case of arbitrary

(possibly out-of-equilibrium) heterogeneous media. Here we use the notations of Ref.26 and

express the diffusivity as
De

D0

= 1− 1

Ω

∫
∂Ω

dS n · exf(x), (6)

where n is the unit normal vector, oriented towards the interior of the obstacles, ex is the

unit vector in the x direction and the integration is taken over the surface of a single obstacle.

The auxiliary function f is periodic in both x and y, is harmonic in the available volume

∇2f = 0 (7)

and satisfies the boundary condition

n · ∇f(x) = n · ex (x ∈ ∂Ω). (8)

where ∂Ω denotes the boundary of the obstacles. Note that f is defined up to an unimportant

additive constant. The above set of equations are not in general analytically tractable, in

particular the periodic boundary conditions for f on Ω present the main obstacle to analytical

progress. The above set of equations can however be easily solved numerically using standard

partial differential equation solvers, eliminating the need for stochastic simulations of the

diffusion process itself.

Here, it is useful to make an explicit connection with an electrostatic problem. If we set

V = f−x, we see that V is harmonic and satisfies Neumann boundary conditions ∂nV = 0 at

the surface of obstacles. Furthermore, the periodicity of f implies that V (x+L)−V (x) = −L.

This means that V is the electrostatic potential in a medium of non-conducting spheres

embedded in a medium of conductivity σ0 = 1 submitted to a constant average electric field

E = 1, where the over-bar denotes uniform spatial average. The effective conductivity is

defined by the relation σe = σE/E, and from this we find

σe
σ0

= −
∫

Ω
dr ∂xV

LdE
=

1

Ld

(
Ω−

∫
Ω

dr ∂xf

)
. (9)

Using the divergence theorem and Eq. (6) we obtain

σe
σ0

=
Ω

Ld
De

D0

= (1− ϕ)
De

D0

. (10)
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This means that, up to the multiplicative factor (1 − ϕ), the effective diffusivity of a peri-

odic medium with reflecting obstacles is exactly the same as the effective conductivity of a

medium containing non-conducting elements. This connection is well known6,17,27,28 but the

above formula is useful to extract formulas on diffusivity from the literature on electrostatics

in heterogeneous media.

From now on, we focus on the case of two dimensions.

III. EXACT ASYMPTOTIC EXPANSIONS OF THE EFFECTIVE

DIFFUSIVITY IN THE DILUTE LIMIT ϕ→ 0 IN 2D

We now consider dispersion in the dilute limit, ϕ → 0. In this Section, we choose units

of length such that L = 1. As mentioned above, the main obstacle to analytical progress is

the periodicity condition on f . However, in the dilute limit, it is convenient to look at the

behavior of f at the vicinity of the obstacles and to solve the equations by requiring that

f vanishes at infinity (meaning that that periodic conditions are approximately satisfied).

The solution then reads

f ' − cos θR2/r, (11)

where R is the radius of the obstacles, and (r, θ) are polar coordinates when the origin is set

at the center of the obstacles. The above expression is the solution of Eqs. (7,8) in infinite

space, and inserting it into (6) yields

De = 1 +
R

Ω

∫ π

0

dθ cos θf(R, θ) = 1−R2

∫ π

0

dθ cos2 θ = 1− ϕ+ o(ϕ), (12)

where ϕ = πR2/L2 is the volume fraction. This is the Maxwell result (1) at first order. To

go to next order, we consider the problem as a strong localized perturbation problem (as

described in Ref.18), in the spirit of boundary layer theory. The function f is assumed to

have components at scale R, such that its behavior when R→ 0 at fixed r/R is given by

f(x) = R
[
Φ0(r/R, θ) +R2Φ1(r/R, θ) +R4Φ2(r/R, θ) + ...

]
, (13)

with θ the angle with respect to ex, the usual convention for polar coordinates. The first

term of this expansion comes from the comparison with Eq. (11), which enables us to identify

Φ0 as

Φ0(r̃, θ) = − cos θ/r̃, (14)
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where r̃ = r/R is the renormalized radius. The magnitude of the next order terms in the

expansion (13) at this stage is not justified, but it will become clear that this expansion is

in fact correct. For the outer solution, obtained by considering the limit R → 0 when r is

fixed, we assume the following ansatz

Φ(x) = R2[f1(x, y) +R2f2(x, y) +R4f3(x, y) + ...], (15)

where one has anticipated forthcoming calculations by assuming that the underlying expan-

sion parameter is R2. The leading order term is however determined from the fact that the

outer solution and the inner solution must match in the regime R � r � 1, so that the

function f1 must behave as

f1(r, θ) ∼
r→0
− cos θ/r, (16)

where the right hand side is identified by considering Eq. (11). The function f1 must be

harmonic and periodic in both x and y with period 1, and can thus be expressed as

f1(x, y) = −2π ex · ∇G(x), (17)

where G is the pseudo-Green’s function29 for the unit-square with periodic boundary con-

ditions, i.e. the solution of

−∇2G(x) = δ(x)− 1 (18)

with periodic conditions in x and y. It turns out that this pseudo-Green function is known

in closed form30, and is given by

G(x, y) =
1

4π
ln
{
e−π(y2+x2)|θ1(π(x+ iy)|i)θ1(π(y + ix)|i)|

}
+ C, (19)

where, in the above, G is defined up to an unimportant additive constant C, i2 = −1, and

θ1 is the elliptic Jacobi theta function, defined as

θ1(z|i) = θ1(z, q = e−π) = 2e−π/4
∞∑
n=0

(−1)ne−πn(n+1) sin[(2n+ 1)z]. (20)

Using Eq. (19), the behavior of G near the origin reads

G(x) ∼
r→0

ln r

2π
− r2

4
+ C ′ + A4r

4 cos(4θ) +O(r8 cos(8θ)), (21)
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where C ′ is another unimportant constant, and the coefficient of the fourth order term reads

A4 = − π

16
+
π3
∑∞

n=0(−1)ne−π(n+1/2)2(2n+ 1)5

240
∑∞

n=0(−1)ne−π(n+1/2)2(2n+ 1)
' −0.1253... (22)

Using (17), we see that the behavior of f1 near the origin is

f1(x) ∼
r→0
−cos θ

r
+ πr cos θ + C ′ − 8πA4r

3 cos(3θ) +O(r7). (23)

We now proceed to calculate the inner solution at the next order Φ1. The boundary condition

for Φ1 is deduced from the expansion in R of Eq. (8),

∂r̃Φ1|r̃=1 = 0 (24)

Furthermore, Φ1 is harmonic and its behavior at infinity must match with the behavior of

the outer solution (23) near the origin, so that

Φ1(r̃, θ) ∼
r̃→∞

π cos θr̃. (25)

The solution for Φ1 can therefore be written as

Φ1(r̃, θ) = π cos θ

(
r̃ +

1

r̃

)
. (26)

Inserting this expression into the inner expansion (13) and the expression (6) for De leads

to

De = 1− ϕ+ ϕ2 +O(ϕ3) (27)

which means that the renormalized formula for De is exact at second order. The solution at

next order is obtained as follows: the outer function f2 must diverge as π cos θ/r for small r

to match with the corresponding term in Eq. (26), meaning that f2 = −πf1, which admits

the small r behavior

f2(r, θ) ∼
r→0

π
cos θ

r
− π2r cos θ + ... (28)

The inner solution Φ2 is

Φ2(r̃, θ) = −8πA4

(
r̃3 +

1

r̃3

)
+ π cos θ

(
r̃ +

1

r̃

)
(29)

which is found by requiring that Φ2 is harmonic, with Neumann condition at r̃ = 1 and that

the cubic term in r̃3 matches with the corresponding term in the expression of f1 [Eq. (23)]
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and that the linear term corresponds to the linear term in the expression of f2 [Eq. (28)].

Inserting this value into Eq. (6) leads to

De = 1− ϕ+ ϕ2 − ϕ3 +O(ϕ4) (30)

so that the renormalized expression (2) is still valid at this order, even though the non-trivial

coefficient A4 is already present in the inner solution Φ2.

This calculation can be extended iteratively to higher orders. Since all functions fn

can be constructed with the Green’s function G, the resulting expression for De therefore

depends on the coefficients appearing in the expansion of the Green’s function. We describe

in Appendix A how to find De to all orders. The main outcome of this calculation is that

the renormalized result (2) is exact up to (and including) the fourth order in ϕ, i.e.

De

D0

=
1

1 + ϕ
+O(ϕ5). (31)

and this explains why the above formula is so precise up to seemingly unreasonably high

values of ϕ (up to 0.5). The expression of the first correction to the renormalized formula

can be expressed in terms of the coefficient A4 appearing in the expression of the Green’s

function:

De

D0

=
1

1 + ϕ
− 384 A4

π2
(ϕ5 − ϕ6) +O(ϕ7) ' 1

1 + ϕ
− 0.61165(ϕ5 − ϕ6) +O(ϕ7) (32)

Finally, we also check that the present exact analytical approach is in fact equivalent to the

multipole expansion approach. Using the above mentioned connection between diffusivity

and conductivity, and an analytical series for the effective conductivity for non-conducting

inclusions proposed by Perrins et al.31 (correcting a result derived by Rayleigh), we see that

the multipole expansion approach for our problem is

De

D0

=
1

1− ϕ

(
1− 2ϕ

1 + ϕ− 0.305827ϕ4

1−1.402958ϕ8 − 0.013362ϕ8

)
. (33)

Direct comparison of the above formula with the expansion obtained within our formalism

shows that Eq. (33) is valid up to the order ϕ16.

IV. THE LIMIT OF NEARLY TOUCHING OBSTACLES IN 2D

We now consider the limit where the space between obstacles vanishes (R → L/2). For

the 2D problem, the effective diffusivity vanishes in this limit, De → 0. As remarked in
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Ref.19, and mentioned above, adding a ghost boundary condition identical to the zero flux

condition at the boundary of an effective channel does not change the effective diffusivity

in the x direction, which can thus be obtained by considering Brownian motion inside a

channel of local height h(x)

h(x) =
L

2
−
√
R2 − x2 Θ(R− |x|), (34)

where Θ corresponds to the Heaviside function. The above expression is valid for −L/2 <
x < L/2 and is then repeated with period L.

When R → Rc = L/2, the effective diffusivity becomes limited by the crossing of the

narrow regions between the obstacles, separated by a length a at the neck. In these regions,

the typical channel height h is small compared to the longitudinal dimensions L. In this

limit, it is thus appropriate to consider an adiabatic type of approximation, where one

assumes a much smaller relaxation time in the lateral direction than in the longitudinal one.

This approximation is known as the Fick-Jacobs approximation, and, upon its application,

the problem is mapped onto a one dimensional dynamics for the coordinate x(t). The effects

of the geometry are incorporated via an effective potential

Φ(x) = −kBT lnh(x), (35)

acting on the particle at the lowest order, and by an effective one dimensional diffusivity

D(x) which is modified at higher orders. The resulting effective one dimensional diffusion

equation, for the marginal probability distribution along the channel, takes the form

∂tp
∗(x, t) = ∂x{D(x)[∂xp

∗(x, t) + βp∗(x, t)∂xΦ(x)]}. (36)

with β = 1/kBT . We notice that the potential must always take the form given in Eq. (35)

as for a finite system the marginal equilibrium probability distribution for the variable x is

given by

p∗eq(x) =
h(x)∫ L

0
h(x′)dx′

(37)

as the, joint, full two dimensional equilibrium distribution is uniform.

The effective diffusivity for the resulting one dimensional diffusion equation can be com-

puted using the exact Lifson Jackson formula32

De =
1

〈h(x)〉〈[D(x)h(x)]−1〉 , (38)
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where here 〈...〉 denotes the uniform average over one period.

At leading order in the limit h/L → 0, the height varies smoothly and the effective

local diffusivity is D(x) ' D0. This approximation is called the basic Fick-Jacobs (FJ)

approximation. In this case, the averages in Eq. (38) have been performed analytically by

Dagdug et al.19, leading to

De

D0

'
[

(1− ϕ)

(
1− λ− π

2
+

2√
1− λ2

arctan

√
1 + λ

1− λ

)]−1

, (39)

where the parameter

λ = 2R/L (40)

becomes unity when the obstacles touch. This expression recovers the asymptotic result for

λ→ 1, first obtained by Keller33,

De

D0

'
√

2(1− λ)

π(1− ϕ)
. (41)

The next order correction to the Fick-Jacobs approximation (39) in terms of a one-

dimensional description leads to an effective local diffusivity depending on the local height,

the parameter ε = h′ is assumed to be small and the correction to (39) to leading order

leads to

D(x) = D0

[
1− h′(x)2

3

]
(42)

where the local slope of the channel is considered as a small parameter. The above formula

is exact at order ε2 = h′2 (included). However for the effective height profile generated by

a square array of disks we clearly see that h′(x) diverges for x = ±R. (Note that when the

height profile is actually discontinuous, the standard perturbative approaches to computing

the diffusion constant beyond the FJ approximation have to be modified34.)

Several partially resummed formulas have been proposed for D(x) that are compatible

with the above expression,

D(x) =


D0/[1 + h′(x)2/3] (Zw)

D0/[1 + h′(x)2]1/3 (RR)

D0 arctan(h′(x))/h′(x) (KP)

(43)
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which were proposed by Zwanzig (Zw)21, Reguera and Rub́ı (RR)22 and Kalinay and Percus

(KP)11, respectively.

Here we propose an alternative form for D(x), based on the argument that the generaliza-

tion of Eq. (42) for the diffusion between two hyper-surfaces of location y = ±h(x1, ..., xn−1),

where n is the spatial dimension. The argument is given in the Appendix B. In this case we

find that the effective local diffusion tensor is given by

Dij(x) ' D0

[
1− 1

3
(∂xih)(∂xjh)

]
. (44)

We note that the approximate formulas given in Eq. (43) have the peculiar properties that

the effective diffusion constant tends to zero where h′(x) diverges - that is to say if the

channel profile has a kink. This is clearly unphysical as only a drastic narrowing of the

channel can reduce the diffusion constant. To remedy this problem we recall that the local

normal of the surface has components

ni(x) =
∂xih

(1 + [∇h]2)
1
2

(45)

and so to order ε2, Eq. (44) can be written as

Dij(x) ' D0

(
1− 1

3
ni(x)nj(x)

)
(46)

where ni(x) is the ith coordinate of the normal to the surface. Coming back to our 2D

problem, this leads us to propose an alternative form for the effective local diffusion constant

D(x) reads

D(x) ' D0{1− [nx(x)]2/3} (47)

where nx is the x− component of the normal to the obstacle,

nx(x) = − h′(x)

{1 + [h′(x)]2}1/2
(48)

An additional reason to postulate that the use of a local diffusion constant (47) may lead

to more accurate results than its non-renormalized form (42) is that the normal to the

surface is the natural relevant quantity that appears in the general equations (6), (8) for the

dispersion (whereas the local quantity h′(x) does not appear). Note that with Eq. (47), the

local diffusivity is always finite and positive.
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FIG. 2. Effective diffusivity of Brownian particles in two-dimensional periodic array of non-

attractive obstacles of volume fraction ϕ. The circles represent the numerical solution obtained

from Eq. (6-8 ) with a partial differential equation solver (FreeFem++). (a) Dashed line: leading

order expression (1) in the dilute regime. Continuous line: renormalized expression (2). The renor-

malized result is surprisingly valid up to a volume fraction of ϕ ∼ 0.4. (b) In the crowded limit,

the Fick-Jacobs’ result (39) is represented with dashed lines while other results of the literature

shown by Reguera and Rub́ı22 (RR) and Kalinay and Percus (KP)11 are plotted respectively using

dashed-dotted and dotted lines. Our result, valid only for the periodic array of obstacles, Eq. (50)

is shown using a solid line. The effective diffusivity is then well-approximated for a volume fraction

ϕ & 0.68 while existing results in the literature are only accurate down to ϕ & 0.77.

Since nx(x) = −x/R for the disk, we obtain the, everywhere finite, expression

D(x)

D0

' 1− 1

3
nx(x)2 = 1− x2

3R2
Θ(R− |x|). (49)

Using Eq. (38) with this local diffusion constant we find the, fully analytical, result

De

D0

'
[

(1− ϕ)

(
1− λ−

√
3λ

2

√
2πλ− ln(2 +

√
3)

2λ2 + 1
+

6λ2

(2λ2 + 1)
√

1− λ2
arctan

√
1 + λ

1− λ

)]−1

.

(50)

The above expression is the main result of this Section.

We now turn to the numerical resolution of Eqs. (6-8) to determine the accuracy of

this new approximate formula, and to compare it with the basic Fick-Jacobs approximation

shown in Eq. (39), and the improvements proposed in Eqs. (43).
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We expect that the basic Fick-Jacobs approximation should work for narrow channels

and so in the region near ϕ = π/4 ' 0.785 where the obstacles touch each other and above

which the diffusion constant vanishes. In Fig.2b we see that Eq. (50) is valid up to 1%

precision all the way down to ϕ ≈ 0.68, whereas the basic FJ approximation is valid only

down to ϕ ≈ 0.77 (for the same precision).

Note also that Eq. (50) is more accurate than the leading order asymptotics (41). Further

more, it is also more accurate than all of the modifications proposed in Eq. (43) for the local

diffusivity (and for which we recall that the averages cannot be performed analytically).

We thus see that the combination of the results (2) and (50) perfectly describe the effective

diffusivity in, respectively, the dilute and the crowded limits in 2D.

V. CONCLUSION

We have revisited the old but important problem of the effective diffusivity of a Brownian

particle diffusing on a square lattice of hard reflecting disks. This problem is also equivalent

to computing the effective conductivity of a medium of nonconducting spheres embedded

in a conducting background as well as a number of other problems such as flow in porous

media and effective dielectric properties6. Using a recently derived Green’s function for the

periodic square lattice30, a perturbative expansion in the volume fraction of the disks was

formulated. This formalism allows a systematic almost algorithmic determination of the

coefficients of the expansion. We confirm that the first four terms in this expansion have

a particularly simple form which explains the the accuracy of Maxwell’s effective medium

approximation, which is in principle only correct to first order but actually turns out to

capture all terms up to fourth order.

The limit of high volume fraction was treated by mapping the problem onto that of diffu-

sion in a one dimensional periodic channel as proposed in19. Here we proposed a new variant

of the second order Fick-Jacobs approximation where the height derivative terms in the ef-

fective diffusivity are replaced, to the same order, by the expression for the surface normal.

This approximation, in common with a number of other suggestions in the literature11,21,22,

avoids the appearance of a negative effective local diffusivity. However it also eliminates

the possibility that the effective diffusivity vanishes. Furthermore, comparison with exact

numerical calculations of the effective diffusivity shows that it describes the behavior of

14



the diffusivity with better accuracy and down to much lower volume fractions that existing

approximation schemes.

A number of extensions of this work remain open, notably the treatment of different

lattices for hard disks in two dimensions, in both the dilute and Fick-Jacobs limits. It would

be particularly interesting to examine the case of random arrangements of hard disks. In

addition, extensions to the three dimensional systems with spherical obstacles clearly merits

further exploration in both limits.
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Appendix A: Calculation of De at all orders

Here we describe how to calculate De at all orders in the density of obstacles. The

notation used is the same as Section III. We write the pseudo-Green’s function G as30

G(x, y) = −r2/4 +
1

8π
ln[ψ(z)ψ(iz)ψ(z)ψ(−iz)] (A1)

with

ψ(z) = θ1(πz, e−π) = 2e−π/4
∞∑
n=0

(−1)ne−πn(n+1) sin[π(2n+ 1)z] (A2)

We can define coefficients ap which appear in the expansion of ψ(z) near the origin

ψ(z) =
∞∑
p=0

apz
p, (A3)

a2m = 0, a2m−1 =
2(−1)m+1π2m−1

(2m− 1)!
e−π/4

∞∑
n=0

(−1)ne−πn(n+1)(2n+ 1)2m−1 (A4)

Our goal is to set up an iterative procedure to calculate the expansion of De in terms of the

coefficients am, which can be straightforwardly calculated with the series above.
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We note that all functions Φk (with k ≥ 1) appearing in the inner expansion are harmonic

and have Neumann boundary conditions, so that general expression is

Φk(r̃, θ) =
k∑
q=1

γk,q cos((2q − 1)θ)

(
1

r2q−1
+ r2q−1

)
(A5)

where the maximal number of terms k follows from the remark that one additional divergence

at most can appear at each iteration.

Next, we construct a set of functions gn which satisfy the following requirements: (i) gn

is harmonic on the unit square with periodic boundary conditions, and (ii) the behavior of

gn near the origin is

gn(r, θ) ∼
r→0

cos((2n− 1)θ)

r2n−1
+
∞∑
k=1

αn,k cos((2k − 1)θ)r2k−1 (A6)

This means that gn contains only one singularity of order 1/r2n−1 near the origin. Next, we

remark that such functions gn can be constructed by using the pseudo-Green’s function for

the unit square with periodic conditions by using

g1 = 2πex · ∇G (A7)

gn+1 =
1

(2n− 1)(2n)
(ex · ∇)2gn (n ≥ 1) (A8)

and this recurrence relation implies that

αn+1,k =
(k + 2)(k + 1)

(2n− 1)(2n)
αn,k+2. (A9)

The coefficients α1,l can then be determined from the expansion near the origin of G(x) by

using Eq. (A7).

We now express the outer solution as a sum of such functions,

fn(r, θ) =
∑
q≥1

An,qgq(r, θ) (A10)

Note that the coefficient of g1 must match the 1/r singularity in Φn−1, the coefficient of g2

must match the 1/r3 singularity of Φn−2, and we repeat this process until we find the last

function Φn−k that does not contain a 1/r2k+1 singularity, i.e. the maximal value of k is the

integer part of n/2. We thus write

A1,1 = −1 (n = 1), (A11)

An,q = γn−q,q (n ≥ 2, q ≤ floor(n/2)), (A12)
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where the particular case n = 1 follows from the identification of Φ1.

Next, the coefficients of the inner solutions are determined by the fact that the behavior

of Φn must match the linear term r in fn, the cubic term r3 in fn−1, and more generally the

term r2k−1 in fn−k+1. Since fn−k+1 is a sum over the functions gq, we obtain

γn,k =

qm(n,k)∑
q=1

An−k+1,qαq,k (A13)

qm(n, k) ≡ max[1, floor(n− k + 1)/2] (A14)

These formulas enable us to evaluate De(ϕ) in terms of a series whose coefficients are cal-

culated iteratively. The first terms are

De = 1−ϕ+ ϕ2 − ϕ3 + ϕ4 − 1.611(ϕ5 − ϕ6)− 2.223(ϕ7 − ϕ8)− 3.049 ϕ9 + 3.236 ϕ10

− 4.248 ϕ11 − 4.622 ϕ12 − 6.754 ϕ13 + 7.446 ϕ14 − 9.953 ϕ15 + 11.077 ϕ16

− 15.201 ϕ17 + 17.465 ϕ18 +O(ϕ19). (A15)

Appendix B: Derivation of Equation (44)

Here we derive the approximate relation Eq. (44) which represents the first correction to

the basic Fick-Jacobs approximation. We consider the stochastic trajectories of a particle

(x(t), z(t)) between the surface of height z = h(x) and the surface z = 0. Here z denotes

the direction perpendicular to the channel. We start by recalling an exact result for the

marginal probability density function p∗(x, t)

p∗(x, t) =

∫ h(x)

0

dz p(x, z, t) (B1)

for the position x along the channel. In Ref.35 it was shown that

∂tp(x, t) = D0∇ · (∇p∗(x, t)− p(x, h(x), t)∇h(x)) , (B2)

where ∇ above indicates the gradient operator parallel to the channel, that is to say on the

coordinates x. However, the above is not a closed equation for p∗(x, t) due to the presence

of the surface term p(x, h(x) in the advection term.

We now proceed with a perturbative expansion for the full probability density function

p(x, z) based on the fact that h(x), and thus z < h(x), is small. One writes,

p(x, z, t) = p0(x, t) + z2p2(x, t) +O(z4), . (B3)
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the choice of the expansion in z2 being justified by the no-flux boundary condition at the

flat lower surface z = 0 ∂zp(x, z, t)|z=0 = 0. The no-flux boundary condition at the upper

surface can be written as

[∇p(x, z, t) · ∇h(x)− ∂zp(x, z)]z=h(x) = 0. (B4)

Inserting Eq. (B3) into the above, we find that

p2(x, t) =
1

2h(x)
∇p0(x, t) · ∇h(x). (B5)

Integrating Eq. (B3) to derive the marginal probability distribution gives

p∗(x, t) = h(x)p0(x, t) +
h3(x)

3
p2(x, t) +O(h5), (B6)

and using Eq. (B5) then gives to leading order

p∗(x, t) = h(x)p0(x, t) +
h2(x)

6
∇p0(x, t) · ∇h(x). (B7)

The first order solution to the above is given by

p0(x, t) =
p∗(x, t)

h(x)
, (B8)

and using this one recovers the basic Fick-Jacobs approximation. Solving Eq. (B7) to next

order by iteration gives

p0(x, t) =
p∗(x, t)

h(x)
− h(x)

6
∇p

∗(x, t)

h(x)
· ∇h(x). (B9)

Now using Eqs. (B3),(B5),(B9), we find that the surface term is, to leading order, given by

p(x, h(x), t) =
p∗(x, t)

h(x)
+
h(x)

3
∇p

∗(x, t)

h(x)
· ∇h(x). (B10)

Substituting this into Eq. (B2) then leads to the closed form equation for p∗(x, t):

∂tp
∗(x, t) = ∂xi

[
Dij(x)

(
∂xjp

∗(x, t)− p∗(x, t)∂xj ln(h(x))
)]
, (B11)

where Dij(x) is given by Eq. (44).
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