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The stochastic motion of particles in living cells is often spatially inhomogeneous with a higher
effective diffusivity in a region close to the cell boundary due to active transport along actin filaments.
As a first step to understand the consequence of the existence of two compartments with different
diffusion constant for stochastic search problems we consider here a Brownian particle in a circular
domain with different diffusion constants in the inner and the outer shell. We focus on the narrow
escape problem and compute the mean first passage time (MFPT) for Brownian particles starting
at some pre-defined position to find a small region on the outer reflecting boundary. For the annulus
geometry we find that the MFPT can be minimized for a specific value of the width of the outer shell.
In contrast for the two-shell geometry we show that the MFPT depends monotonously on all model
parameters, in particular on the outer shell width. Moreover we find that the distance between the
starting point and the narrow escape region which maximizes the MFPT depends discontinuously
on the ratio between inner and outer diffusivity.

PACS numbers:

I. INTRODUCTION

The narrow escape problem is ubiquitous in biology and chemistry problems [1–5] and consists in calculating the
mean first passage time (MFPT) of a random walk or a Brownian motion from a starting point to a small absorbing
window, the so-called escape or target region, on an otherwise reflecting boundary of a bounded domain. Mathe-
matically the problem reduces to solving a Poisson equation with mixed Neumann-Dirichlet boundary conditions [6].
These equations can be solved numerically with a partial differential equation (PDE) solver for any complex geometry
boundaries. Moreover, new numerical techniques allow the efficient simulation of the stochastic process using Kinetic
Monte Carlo algorithms [7–9].

Analytically, the narrow escape problem has been widely studied in the last decades [1, 10–14] by focusing on the
limiting case of small escape regions on the domain boundary. In two dimensions, the leading order of the MFPT
is known to be proportional to the logarithm of harmonic measure of the escape region, which is proportional to its
perimeter in the case of a disk-like domain [10, 15]. Also the sub-leading behavior of the MFPT has been studied
which plays an important role for the logarithmic dependence and depends generally on the pseudo Green’s function
of the domain [16–21]. An exact solution of the escape problem, via a general integral formula, was recently shown for
any simply connected planar domain with an arbitrary diffusivity implying the conformal mapping of the unit disk
onto this domain [15]. Moreover, some asymptotically exact formulas was found for non-spherical three-dimensional
domains [22].

Recently the narrow escape problem was studied in spatially inhomogeneous environments [8]. The type of spatial
inhomogeneity was inspired by the spatial organization of the cytoskeleton of cells with a centrosome [9, 23, 24] along
which ballistic transport is possible in addition to simple diffusion: a circular or spherical domain is divided into
two concentric shells, the inner shell allowing only radial ballistic transport (and diffusion) and the outer shell of
width ∆ allows multi-directional ballistic transport (and diffusion). In these studies it was shown that the MFPT
for the narrow escape problem is optimizable with respect to the width of the outer shell. The physical reason for
the optimization of the MFPT in the considered setup was argued to be related to the accelerated effective diffusion
constant in the outer shell [8, 9, 23, 24], in reminiscence of the optimization of the reaction time in the presence of
surface-mediated diffusion [25–29] with different models of absorption and desorption.

In view of this reminiscence the natural question arises whether the MFPT also shows a non-monotonous - and
hence optimizable - dependence on the thickness of the outer shell if ballistic transport is neglected and only the
diffusion constant in the outer shell is larger than the diffusion constant in the inner shell. Therefore in this paper we
consider this two-shell geometry with only a diffusive motion with two different diffusivities in the center of the cell and
in the cortex of width ∆. Diffusive motion in such discontinuous media, presenting a discontinuity of the coefficient of
diffusion throughout an interface, is little studied. The one-dimensional profile of concentration of diffusive particles
in such domain, presenting a jump close to the interface, was investigated [30–32]. Moreover, a simulation scheme
for one-dimensional problems is presented in the Itō formalism taking into account the drift term proportional to the
gradient of the diffusivity [33–35] and compatible with the Fick’s semi-empirical law. In fact, different writings of
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FIG. 1: Different geometries studied here. The grey region represents the available space for the Brownian particle, denoted as
Ω. The escape region ∂Ωε of angle ε is located on the outer circle denoted as ∂Ω. For the two last geometries, the inner circle
is denoted as ∂Ω∆ and the width of the outer shell is denoted as ∆. (a) Disk geometry mentionned in section II. (b) Annulus
geometry studied in section III. (c) Two-shell geometry studied in section IV.

Langevin equation are possible in heterogeneous media, where the diffusivity is spatially varying [36].
In this article, we will be interested in the first passage problem for the disk-like geometries of radius R presenting

one target of angle ε located on the outer boundary, which represents an opening of length εR. The domain is
separated into two shells: the inner shell of radius R−∆ playing the role of the center of the cell, where the diffusive
particle has a diffusivity D0 and the outer shell of width ∆ playing the role of the cortex, where the diffusive particle
has a diffusivity D∆. Since our main motivation was to investigate an idealized case in which the outer shell represents
the actin cortex of a cell and therefore has a higher effective diffusion constant we mainly, but not exclusively, look at
D∆ > D0. We will look at two different expansions within this circular discontinuous geometry: the narrow escape
problem where the escape region is small (ε� 1) and the thin outer region problem (∆� R). We present in section
II a well-known solution of the narrow escape problem of the disk (same diffusivity in the two shells), with a geometry
represented in the Fig. 1a. In section III, we study the annulus geometry, shown in Fig. 1b, where the diffusive particle
is excluded from the inner shell. Finally, we will study in section IV the discontinuous problem whose the geometry
is shown in Fig. 1c. The section V concludes with a discussion and an outlook.

II. NARROW ESCAPE PROBLEM FOR THE DISK-LIKE GEOMETRIES

We first look at the escape problem for the two-dimensional disk-like geometries. This problem is equivalent to
the two-shell geometry with the same diffusivity in both shells such that D∆ = D0 which is independent of the value
of ∆. The available space for the Brownian particles is a disk of radius R, denoted as Ω, and its area is equal to
|Ω| = πR2. The external boundary is located at the radius |x| = R and is denoted as ∂Ω whereas the absorbing
part of this boundary located at |θ| ≤ ε/2 is denoted as ∂Ωε. The geometry of this domain is sketched in Fig. 1a.
The MFPT, denoted as t(x) for a Brownian particle starting at the point x, can be related to the probability density
function p(y, τ |x) to be at the point y after a time τ without having reached the escape region via

t(x) =

∫
Ω

dy

∫ ∞
0

dτ p(y, τ |x). (1)

The equations for the function t(x) are then deduced from the backward equations for the probability density func-
tion [6]

D0∇2t(x) = −1, x ∈ Ω (2)

t(x) = 0, x ∈ ∂Ωε (3)

n · ∇t(x) = 0, x ∈ ∂Ω\∂Ωε. (4)

The physical parameters of this problem are: the diffusivity of the Brownian particle D0, the radius of the disk
R and the angle ε of the escape region. Only one pertinent parameter remains to study the narrow escape (NE)
problem: ε, using dimensionless variables after rescaling the length by the radius R and the time by R2/D0. The
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FIG. 2: (a) Numerical solution of the dimensionless mean first passage time (MFPT) for a Brownian particle starting at x:
D0t(x)/R2 for ε = 0.2 obtained by solving the Eqs. (2-4) with FreeFem++. (b) Dimensionless global MFPT (GMFPT):
D0〈t〉/R2, dimensionless MFPT for a particle starting at the center (CMFPT): D0t(0)/R2 and dimensionless maximal MFPT
(MMFPT): D0tmax/R2 plotted as a function of ε. The numerical solutions (symbols) are compared to the analytical solution
(full lines) given by Eqs. (15), (17) and (18) respectively. These expressions obtained in the narrow escape limit are quite accurate
for ε . 2π/3. The fitted value of the regular part of the pseudo Green’s function close to the hole is πR(x0|x0) ' 0.124728
which represents a relative error of 0.217%.

numerical solution of Eqs. (2-4) for the MFPT obtained with the PDE solver FreeFem++ [37] is shown in Fig. 2a for
the escape angle ε = 0.2.

In this section, we will reproduce the main results of the literature [1, 11, 13, 19–21, 38, 39] for the MFPT of the
disk geometry, which will constitute the starting point of our analysis. The leading order of the MFPT in the NE
limit (ε� 1) is given by the constant solution equal to the spatial average value of the MFPT [10]

t(x) ' 〈t〉 ' − |Ω|
πD0

ln ε. (5)

Applying the Benichou’s method [16, 17], one obtains straightforwardly the space-dependent solution in leading order

t(x) ' |Ω|
πD0

ln
|x− x0|
εR , (6)

where x0 = (R, 0) is the center of the escape region. However, the space average of the MFPT remains equal to
Eq. (5) since the average value of ln(|x−x0|/R) is zero over the disk. To obtain the order O(ε0) result for the MFPT,
which is important even if ε is as small as 10−2 due to the logarithmic behavior, we introduce the pseudo Green’s
function G(x|x0), following Refs. [19, 20], defined by the equations

∇2G(x|x0) =
1

|Ω| , x ∈ Ω (7)

n · ∇G(x|x0) = 0, x ∈ ∂Ω (8)

G(x→ x0|x0) = − 1

π
ln
|x− x0|
R +R(x0|x0), (9)∫

Ω

dx G(x|x0) = 0, (10)

where R(x0|x0) is the (unknown) regular part of the Green’s function at the center of the escape region x0. The
spatial average of the MFPT, hereinafter called Global Mean First Passage Time (GMFPT), is given by

〈t〉 =
|Ω|
πD0

[
− ln

ε

4
+ πR(x0|x0)

]
, (11)

and the expression of the MFPT t(x) is

t(x) = 〈t〉 − |Ω|
D0

G(x|x0). (12)



4

A general proof of these equations is shown in the appendix A. The equations (7-10) can be solved for the disk-like
geometries we study here, for the regular part of the Green’s function defined by

R(x|x0) = G(x|x0) +
1

π
ln
|x− x0|
R . (13)

The MFPT function t(x) satisfies thus the expression

t(x) =
|Ω|
πD0

[
ln

4|x− x0|
εR + πR(x0|x0)− πR(x|x0)

]
. (14)

For the disk geometry represented in Fig. 1, the regular part of the Green’s function satisfies the Eq. (B6). Its value
close to the escape region is equal to R(x0|x0) = 1/8π. The GMFPT expression is

〈t〉 '
ε�1

R2

D0

[
− ln

ε

4
+

1

8

]
, (15)

and the expression of the MFPT for a Brownian particle starting at x is

t(x) '
ε�1

R2

D0

[
ln

4|x− x0|
εR +

R2 − |x|2
4R2

]
. (16)

At the leading order, this solution is comparable to Benichou’s solution (6) close to the escape region. The expression
of the MFPT for a Brownian particle starting at the center of the disk x = 0, denoted hereinafter as CMFPT, is then

t(0) '
ε�1

R2

D0

[
− ln

ε

4
+

1

4

]
, (17)

and the expression of the maximal value of the MFPT, denoted hereinafter as MMFPT, is

tmax '
ε�1

t(−x0) '
ε�1

R2

D0

[
− ln

ε

4
+ ln 2

]
, (18)

corresponding to the value of the MFPT for a particle starting at the position −x0 = (−R, 0), at the maximal distance
to the escape region. The GMFPT, CMFPT and MMFPT values are shown in Fig. 2b as a function of ε. The narrow
escape expressions given by Eqs. (15), (17) and (18) are compatible with the numerical solutions of the PDEs (2-4)
for ε . 2π/3.

These numerical solutions are obtained with the finite element method using the software package FreeFem++ [37],
with a relative interpolation error of order 10−4 for a mesh grid built with around 104 vertices. For our study of the
GMFPT, we can compare the numerically interpolated value of πR(x0|x0) which is approximatively equal to 0.124728
with the analytical solution 1/8 which represents a relative error of 0.217%. In the following sections, we considerer
the data generated by FreeFem++ as the exact numerical solution.

Furthermore, Singer et al. [13] solved directly the partial differential equations for the MFPT (2-4) and gave an
exact expression of the MFPT for all values of ε, as an infinite series with implicit coefficients written as an integral.
The explicit form of these coefficients was given by Rupprecht et al. [39] in terms of Legendre polynomials. Finally,
Caginalp and Chen [38] derived a fully explicit closed formula for the mean first-passage time which writes

D0t(z)

R2
=

1− |z|2
4

+ ln

∣∣∣∣∣1− z +
√

[1− z exp(−iε/2)][1− z exp(iε/2)]

2 sin(ε/4)

∣∣∣∣∣ (19)

with respect to the complex variable z = r exp(iθ) such that r = |x|/R and θ represents the angle between x and the
center of the escape region x0. This exact expression is asymptotically compatible with Eq. (16) in the ε � 1 limit.
We also mention here that the result of Rupprecht et al. [39] provides the full distribution of the first passage times.

To solve the annulus and two-shell geometry problems, we will use the same formalism to solve the equations for
the regular part of the pseudo Green’s function R(x|x0). Then we apply Eqs. (11) and (14) to obtain the expressions
of the GMFPT and the MFPT for a particle starting at the position x, which are correct in the first sub-leading
order of the small escape angle ε expansion. In addition, we can mention that the recent exact solution of the escape
problem for any simply connected planar domain with an arbitrary diffusivity [15]. This exact solution is compatible
with the Eq. (19) for the disk geometry.
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FIG. 3: Numerical solution of the dimensionless mean first passage time D∆t(x)/R2 for a particle starting at x with an escape
angle ε = 0.2 obtained by solving the Eqs. (20-23) with FreeFem++ for several values of ∆: (a) ∆/R = 0.1, (b) ∆/R = 0.25,
(c) ∆/R = 0.4, (d) ∆/R = 0.6, (e) ∆/R = 0.75 and (f) ∆/R = 0.9. The maximal value of t(x) is always located at (−R, 0).

III. THE NARROW ESCAPE PROBLEM FOR THE ANNULUS GEOMETRY

In this section, we look at the NE problem for a Brownian particle inside an annulus of width ∆, R−∆ ≤ |x| ≤ R,
denoted as Ω, with an area |Ω| = π∆(2R − ∆). The outer boundary |x| = R is denoted as ∂Ω while the inner
boundary |x| = R−∆ is denoted as ∂Ω∆. The escape region is part of the outer boundary defined by |θ| ≤ ε/2 and
is denoted as ∂Ωε. The opposite case with an escape region on the inner boundary was studied by Holcman et al.
[1]. This problem is equivalent to the two-shell geometry in the limit case D0 = 0 by which the diffusive particle is
excluded from the inner shell (|x| ≤ R − ∆). The equations for the MFPT for a Brownian particle starting at the
position x, denoted as t(x), are deduced from the Eq. (1) and the backward equations for the probability density
function [6]

D∆∇2t(x) = −1, x ∈ Ω (20)

t(x) = 0, x ∈ ∂Ωε (21)

n · ∇t(x) = 0, x ∈ ∂Ω\∂Ωε (22)

n · ∇t(x) = 0, x ∈ ∂Ω∆. (23)

This problem can be solved with only two dimensionless parameters: the dimensionless annulus width δ = ∆/R with
respect to the radius R and the angle ε of the escape region, after rescaling the length by the radius R and the
time by R2/D∆. Numerical solutions of these PDEs are shown in the Fig. 3 for several values of the annulus width
∆ ∈ [0,R] and the escape angle ε = 0.2. When ∆→ R, the solutions of the section II are valid, replacing D0 by D∆

in analytical expressions, comparing the Fig. 3f with the Fig. 2a.
Fig. 3 demonstrates several interesting features of the MFPT: by comparing (a) with (f) one sees that particles

starting close to the escape region find the target faster in the thin annulus (a), i. e. small ∆, than in the thick
annulus (f), i. e. large ∆. The inaccessible central region represents an obstacle impeding the particles starting close
to the escape region from diffusing away when it is sufficiently large. On the other hand particles starting far away
from the escape region, for instance on the opposite side, reach the target faster in the thick annulus (f), i. e. large
∆, than in the thin annulus (a), i. e. small ∆. Those particle are impeded by the central obstacle to move quickly
towards the target, they remain jammed for a longer time when the obstacle is large. Thus the MFPT for particles
starting close to the escape region increases with increasing ∆, whereas the MFPT of particles starting far away from
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FIG. 4: Numerical solution (symbols) of the dimensionless global mean first passage time D∆〈t〉/R2 compared with the
analytical expression (straight lines) given by Eq. (25) for several values of ∆. In inset, the fitted value of R(x0|x0), obtain
from Eq. (11), is plotted as a function of δ = ∆/R and compared to its analytical expression (24). This function goes to 1/8π
for ∆→R and diverges as πR/6∆ for ∆→ 0.

the escape region decreases with decreasing ∆. After averaging over the initial positions these two opposing tendencies
could in principle lead to a minimum of the GMFPT as function of ∆. This is actually what we will find in the next
subsection.

A. The narrow escape limit (ε� 1)

The derivation of the sub-leading order of the MFPT is presented in appendix A, where it is shown that the MFPT
satisfies Eq. (14) with the volume replaced by |Ω| = π∆(2R − ∆) and D0 by D∆. The regular part of the Green’s
function R(x|x0) is calculated in the appendix B 2 and its expression is given by Eq. (B21) in terms of (dimensionless)
polar coordinates. Its value at the center of the escape region is then equal to

R(x0|x0) =
3

8π
− 1

4πδ(2− δ) −
(1− δ)4 ln(1− δ)

2πδ2(2− δ)2
+

2

π

∞∑
n=1

(1− δ)2n

n [1− (1− δ)2n]
, (24)

which implies the GMFPT expression from Eq. (11)

D∆〈t〉
R2

'
ε�1

δ(2− δ)
[
− ln

ε

4
+

3

8
+ 2

∞∑
n=1

(1− δ)2n

n [1− (1− δ)2n]

]
− 1

4
− (1− δ)4 ln(1− δ)

2δ(2− δ) . (25)

In Fig. 4, the GMFPT is plotted as a function of the escape angle ε for several annulus widths ∆ ∈ [0,R]. In the
limit ε� 1, we observe that the analytical prediction given by Eq. (25) is verified in comparison with the numerical
solutions obtained with FreeFem++. Moreover, we remark in the inset of the Fig. 4 that the value of the regular
part of the Green’s function at x0 plotted with respect to the dimensionless annulus width δ, extract from numerical
solutions, is compatible with the Eq. (24).

The value of R(x0|x0) depends on the function S(X) defined by the series expression (for |X| < 1)

S(X) =

∞∑
n=1

X2n

n(1−X2n)
. (26)

When X → 0, this function behaves like S(X) ' − ln(1 − X2). Then, in the limit δ → 1, the regular part of the
pseudo Green’s function behaves like R(x0|x0) ∼ 1/8π, corresponding to the result of the section II which implies
that the GMFPT satisfies the Eq. (15). When X → 1, the leading order of the series is S(X) ' π2(1 − X)−1/12.
Thus, in the limit ∆ → 0, the regular part of the pseudo Green’s function behaves like R(x0|x0) ∼ πR/6∆ which
implies the leading order of the GMFPT in the ε→ 0 and δ → 0 limits

D∆〈t〉
R2

' −2δ ln
ε

4
+
π2

3
+O(δ, ε). (27)
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FIG. 5: (a) Numerical solution (symbols) of the dimensionless global mean first passage time (GMFPT) D∆〈t〉/R2 as a function
of δ = ∆/R for several values of ε. It is compared respectively with straight and dashed lines to the narrow escape expression
(25) for ε� 1 and −δ ln ε� 1 and the pseudo one-dimensional solution (41) for δ � 1 and −δ ln ε� 1. The GMFPT presents
a minimum for fixed value of ε < 1 at 0 < ∆ ≤ R, well-described by the narrow escape expression. In the inset, the presence
of this minimum is represented for ε ∈ {0.1, 0.2, 0.3} for a linear scale. (b) Numerical solution of the dimensionless GMFPT
(circles) and MMFPT (squares) as a function of ε ≥ 10−2 for δ = 10−3 compared to the analytical solution given respectively
by Eq. (41) and Eq. (42) obtained in the limit ∆�R (straight lines).

When ε = 2π, the mixed Neumann-Dirichlet boundary condition becomes a fully absorbing (Dirichlet) boundary
condition. The MFPT for a particle starting at x is then radially symmetric and the GMFPT expression is

D∆〈t〉
R2

=
ε=2π

3δ(2− δ)
8

− 1

4
− (1− δ)4 ln(1− δ)

2δ(2− δ) . (28)

The expression (25) of the GMFPT in the narrow escape limit can be decomposed as the sum of the GMFPT to reach
the boundary ∂Ω given by Eq. (28) and the GMFPT starting at the boundary ∂Ω to reach the escape region which
writes in the NE regime as

D∆

R2
t(∂Ω→ ∂Ωε) ' δ(2− δ)

[
− ln

ε

4
+ 2

∞∑
n=1

(1− δ)2n

n [1− (1− δ)2n]

]
. (29)

Moreover, the maximal value of the MFPT is located in the NE regime at −x0 = (−R, 0). Its expression is then
obtained from Eqs. (14) and (B21) with x = −x0

D∆tmax

R2
' D∆t(−x0)

R2
'
ε�1

δ(2− δ)
[
− ln

ε

8
+ 4

∞∑
k=0

(1− δ)2(2k+1)

(2k + 1)
[
1− (1− δ)2(2k+1)

]] . (30)

In the ε→ 0 and δ → 0 limits, this expression of the MMFPT goes to the value

D∆tmax

R2
' −2δ ln

ε

8
+
π2

2
+O(δ, ε). (31)

In the opposite regime (ε ' 2π), the maximal value of the MFPT is located on the circle of radius |x| = R−∆ and
its expression is then given by

D∆tmax

R2
=

ε=2π

δ(2− δ)
4

+
(1− δ) ln(1− δ)

2
(32)

for a fully absorbing boundary.
The GMFPT calculated by applying the PDE solver FreeFem++ to Eqs. (20-23) is shown in Fig. 5a as a function

of the width of the annulus ∆ for a fixed value of ε. One observes that the GMFPT approaches a constant in the
thin annulus limit. Furthermore, the GMFPT is minimized for a specific value of the width ∆ of the annulus. For
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FIG. 6: Numerical solution of the dimensionless global mean first passage time (GMFPT) D∆〈t〉/R2 (a) and maximal mean
first passage time (MMFPT) D∆tmax/R2 (b) as functions of the annulus width ∆/R and the escape angle ε. The black dots
indicate the location of the minimum of the GMFPT and MMFPT as a function of ∆ for fixed ε. The validity domain of
the narrow escape (NE) expression (ε � 1 and −δ ln ε > 1) and the pseudo one-dimensional (1d) expression (δ � 1 and
−δ ln ε� 1) are represented in both figures.

an escape angle ε . 1, the minimum is pronounced and clearly visible in Fig. 5a, whereas for smaller values of ε the
minimum is very shallow and nearly invisible but indicated by the black dots in Fig. 6.

In connection with Fig. 3 we have already realized that the MFPT for particles starting close to the escape region
increases with increasing ∆, whereas the MFPT of particles starting far away from the escape region decreases with
decreasing ∆ such that these opposing tendencies could lead to a minimum of the GMFPT as a function of ∆. This
picture is confirmed by the behavior of the GMFPT presented in Fig. 6a, where the black dots indicate the value of ∆
where for fixed ε the minimum occurs. The starting point with the maximum MFPT is always −x0 = (−R, 0) and
Fig. 6b shows clearly that for ε < 0.15 the MFPT of a particle starting opposite to the escape region first decreases
with increasing ∆, reaches a minimum at a specific width and then increases with ∆.

It is an interesting question whether the existence of the minimum discussed here persists when the impenetrable
central obstacle, |x| < R−∆, is replaced by a soft repulsive barrier, which may occur because of geometric constraints
in a cell. This situation is modeled by a Bessel process [40] which is an overdamped Brownian motion in a logarithmic
potential U(x) for the inverse temperature β

βU(x) = −g ln
|x|
R Θ(R−∆− |x|) (33)

repulsive when g > 0 and presenting a divergence at the center of the disk. Θ denotes here the Heaviside function.
The MFPT starting at x to reach the escape region of angle ε satisfies then the equations

D∆∇2t(x)−D∆β∇U(x) · ∇t(x) = −1, x ∈ Ω (34)

t(x) = 0, x ∈ ∂Ωε (35)

n · ∇t(x) = 0, x ∈ ∂Ω\∂Ωε. (36)

The boundary condition on |x| = R−∆ is given by the conservation of the backward flux: −D∆n · ∇t(x) which does
not depend on the value of the potential. The gradient of potential is

β∇U(x) = −g x

|x|2 Θ(R−∆− |x|). (37)

When g = 0, the MFPT of the disk geometry is recovered (data not shown). In Fig. 7a, the numerical solution
MFPT obtained with the PDE solver FreeFem++ is shown for the width ∆ = 0.25R, the escape angle ε = 0.2 and
the potential strength g = 100. The solution in the inner shell |x| < R−∆ is only θ-dependent since the Brownian
particle moves rapidly to the outer shell following the radial potential, equivalent to the boundary condition n ·∇t = 0
on the inner boundary. This solution is compatible with the annulus geometry in the outer shell (see Fig. 3b). A
difference appears only when the potential is too soft, for example g < 10, since MFPT is considerably changed in
the limit ∆� R.
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FIG. 7: (a) Numerical solution of the dimensionless mean first passage time D∆t(x)/R2 for a particle starting at x for a width
∆ = 0.25R, an escape angle ε = 0.2 obtained by solving the Eqs. (34-36) for the potential (33) with g = 100. (b) Numerical
solution (symbols) of the dimensionless global mean first passage time (GMFPT) D∆〈t〉/R2 as a function of δ = ∆/R for
ε = 0.3 and several values of g compared to the numerical solution obtained for the annulus geometry (see inset of Fig.5a).
Note that the minimum appears for g ≥ 10.

In Fig. 7b, the GMFPT is shown as a function of the width ∆ for ε = 0.3 and several values of g and compared to
the GMFPT obtained for the annulus geometry. For g = 1, the GMFPT of the annulus geometry is compatible only
for ∆ > 0.9R and the minimum is reached for ∆ = 0 instead of ∆ ' 0.4R. A minimum exists for a width ∆ 6= 0 for
g & 10 and for g > 50 the ∆-dependance of the GMFPT is similar to the one of the annulus geometry. The minimum
of the GMFPT is then not present for all soft potentials and a sufficiently strong repulsion is needed for it to appear.
The lower limit of g, denoted as gl, for the existence of a minimum depends on the escape angle ε (data not shown)
and decreases with ε.. In the narrow escape regime (ε� 1), this limit value is then large gl � 1, which implies that
the minimum appears only for a strong potential, like in the annulus geometry.

B. The pseudo one-dimensional limit (∆�R)

In the ∆ � R limit, we can consider a pseudo one-dimensional diffusion on the surface |x| = R and Eqs. (20-21)
become for the function t(θ) dependent only on the orthoradial coordinate

D∆

R2
t′′(θ) = −1 (38)

t(ε/2) = t(2π − ε/2) = 0, (39)

while the Eqs. (22-23) are automatically satisfied. The unique solution of this Cauchy system is

D∆

R2
t(θ) =

(θ − ε/2)(2π − ε/2− θ)
2

. (40)

The GMFPT expression is then given by the spatial average over θ ∈ [0, 2π] of the last expression

D∆〈t〉
R2

'
∆�R

(2π − ε)3

24π
. (41)

This expression reproduces the asymptotic value π2/3 of the GMFPT as predicted by Eq. (27) in the limit ε→ 0 and
δ → 0 simultaneous under the condition −δ ln ε� 1. The limit ε→ 2π gives a vanishing GMPFT which is plausible
since the whole domain is absorbing the Brownian particle. The Eq. (41) is shown in Fig. 5b and compared with the
numerical solution for δ = 10−3 and several values for the escape angle ε ≥ 10−2. We conclude that the prediction of
the pseudo-one-dimensional approximation is valid in the limit δ � 1 for a fixed value of escape angle ε.

The NE expression of the GMFPT given by Eq. (25) is then valid for small values of ε such that −δ ln ε > 1 whereas
the pseudo-1d expression of the GMFPT given by Eq. (41) is valid for small values of δ such that −δ ln ε� 1. These
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two validity domains are shown in Fig. 6 and a comparison between analytical solutions and numerical solution in
both domains is proposed in Fig. 5a. We can then see that the minimum value of the GMFPT is reached in the
narrow escape regime.

In the ∆� R limit, the maximal MFPT is reached at θ = π and its expression is deduced from Eq. (40)

D∆tmax

R2
=
D∆t(π)

R2
'

∆�R

(2π − ε)2

8
. (42)

A numerical verification of this expression is also shown in Fig. 5b for δ = 10−3 and several values of escape angle
ε ≥ 10−2. In the ε → 0 and δ → 0 limits, such that −δ ln ε ≤ 1, this expression is equivalent to Eq. (31). The NE
expression of the MMFPT given by Eq. (30) is then valid for small values of ε such that −δ ln ε > 1 whereas the
pseudo-1d expression of the GMFPT given by Eq. (42) is valid for small values of δ such that −δ ln ε � 1. These
validity domains are shown in Fig. 5b.

IV. NARROW ESCAPE PROBLEM FOR THE TWO-SHELL GEOMETRY

In this section, we investigate the NE problem for the two-shell geometry where the search domain is separated
into two concentric regions: the outer shell of width ∆ for a radius in R−∆ ≤ |x| ≤ R denoted as Ω∆ and the inner
shell for a radius |x| ≤ R − ∆. The inner boundary located at |x| = R − ∆ is denoted as ∂Ω∆ whereas the outer
boundary located at |x| = R is denoted as ∂Ω. The escape region is located on the outer boundary for |θ| ≤ ε/2 and
is denoted as ∂Ωε. The diffusivity of the Brownian particle is different in the two shells, denoted as D0 and D∆ in
the inner shell and the outer shell respectively (see Fig.1c). The MFPT for a diffusive particle starting in the outer
shell and in the inner shell is denoted as t1(x) and t2(x) respectively. The equations satisfied by the functions ti(x)
are deduced from the Eq. (1) and the backward equations for the probability density function [6]

D∆∇2t1(x) = −1, x ∈ Ω∆ (43)

D0∇2t2(x) = −1, x ∈ Ω\Ω∆ (44)

t1(x) = t2(x) and D∆n · ∇t1(x) = D0n · ∇t2(x), x ∈ ∂Ω∆ (45)

t1(x) = 0, x ∈ ∂Ωε and n · ∇t1(x) = 0, x ∈ ∂Ω\∂Ωε. (46)

The boundary conditions (45) on the inner boundary guarantee the continuity of the concentration and the flux of
the Brownian particles across the interface, implying the continuity of the probability density function p(y, τ |x) and
the normal component of the current defined by the Fick’s law as −D(x)∇p(y, τ |x). Note that the model studied
here and the resulting equations (43-46) are different from the diffusion equation with a spatially varying diffusion
constant D(x)∇2t(x) = −1, which has been studied and solved exactly in Ref. [15].

Numerical solutions of these PDEs are shown in Fig. 8 for ∆ = 0.25R and several values of the ratio D∆/D0. This
problem has only three dimensionless parameters: the ratio of diffusivity between outer and inner shells D∆/D0, the
width of the outer shell δ = ∆/R and the angle ε of the escape region, after rescaling the lengths by the radius R
and the time by R2/D∆.

A. The narrow escape limit (ε� 1)

In the limit ε → 0 the MFPT satisfies in sub-leading order Eq. (14) where the volume of the space is |Ω| = πR2

and D0 is replaced by the diffusivity of the region close to the hole: D∆. The regular part of the Green’s function
R(x|x0) is calculated in the appendix B 3 and its expression is given by Eqs. (B45-B46) in terms of (dimensionless)
polar coordinates. Its value at the center of the escape region is then equal to

R(x0|x0) =
1

8π
+

(D∆ −D0)(1− δ)4

8πD0
+

2

π

∞∑
n=1

(D∆ −D0)(1− δ)2n

n {2D0 + (D∆ −D0) [1− (1− δ)2n]} . (47)

We observe that the value R(x0|x0) goes to 1/8π when D∆ → D0 or when ∆→ R. In fact, in these two limits, the
physical problem is identical to the disk geometry discussed in Sec. II. In the limit D∆ � D0, we note that R(x0|x0)
diverges, implying a divergence of the GMFPT. This is due to the fact that the particles starting at |x| < R − ∆
are slowed down by the small diffusivity in the central core. Moreover, we note that in the limit ∆→ 0, the value of
R(x0|x0) diverges as ln(∆/R). The expression of the GMFPT is then given by Eq. (11)

D∆〈t〉
R2

'
ε�1
− ln

ε

4
+

1

8
+
D∆ −D0

8D0
(1− δ)4 + 2

∞∑
n=1

(D∆ −D0)(1− δ)2n

n {2D0 + (D∆ −D0) [1− (1− δ)2n]} . (48)
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FIG. 8: Numerical solution of the dimensionless mean first passage time (MFPT) for a diffusive particle starting at x,
D∆t(x)/R2, obtained from Eqs. (43-46) with FreeFem++. This solution is plotted here for the width of outer shell ∆ = 0.25R
and for several outer shell diffusivities D∆: (a) D∆ = 0.05D0, (b) D∆ = D0, (c) D∆ = 5D0, (d) D∆ = 20D0, (e) D∆ = 100D0

and (f) D∆ = 500D0. Note that the maximum value of the MFPT migrates from (−R, 0) to the center of the disk.

From the Eqs. (14) and (B46), the expression of the CMFPT for a diffusive particle starting at the center of the disk
is in the narrow escape limit

D∆t(0)

R2
'
ε�1
− ln

ε

4
+

1

4
+
D∆ −D0

4D0
(1− δ)2 + 2

∞∑
n=1

(D∆ −D0)(1− δ)2n

n {2D0 + (D∆ −D0) [1− (1− δ)2n]} . (49)

The result for the GMFPT and CMFPT, Eqs. (48) and (49), valid in the narrow escape limit ε→ 0, are shown in
Fig. 9a as a function of ε for D∆ = 5D0 and δ = 0.25. The analytical solutions are compared with numerical solutions
of the PDEs (43-46) obtained with FreeFem++ and with the results of Brownian particle simulations. In figure 9b, the
analytical predictions for R(x0|x0) given by Eq. (47) are compared with the numerical fits of the constant sub-leading
order of the GMFPT obtained with FreeFem++.

For the numerical simulation of Brownian motion, we apply the algorithm presented in the appendix C to the radial
coordinate of the Brownian particle. When the particle is on the inner boundary defined by the identity |x| = R−∆,
the probability to go to the inner or the outer shell is given respectively by Eq. (C9) and Eq. (C10). The movement
is then decomposed into radial and orthoradial coordinates assuming that - for very small displacement - the inner
boundary is approximatively a wall with a zero curvature. This algorithm is valid for any values of δ and ε. The
relative error of these stochastic simulations is inversely proportional to the square-root of their number of realizations
N = 106. The relative error is then of order 10−3.

Furthermore, when ε = 2π, the mixed Neumann-Dirichlet boundary condition becomes a fully absorbing (Dirichlet)
boundary condition implying that the MFPT function is radial. The GMFPT and CMFPT expressions are respectively

D∆〈t〉
R2

=
ε=2π

1

8
+
D∆ −D0

8D0
(1− δ)4, (50)

D∆t(0)

R2
=

ε=2π

1

4
+
D∆ −D0

4D0
(1− δ)2. (51)

The GMFPT and the CMFPT expressions in the narrow escape limit given respectively by Eqs. (48) and (49) can
be decomposed into two terms: respectively the GMFPT and the CMFPT to reach the surface given by Eqs. (50)
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FIG. 9: (a) Numerical solution of the dimensionless global mean first passage time (GMFPT) D∆〈t〉/R2 (circles) and the
dimensionless mean first passage time starting at the center (CMFPT) D∆t(0)/R2 (squares) obtained by the numerical inte-
gration of the Langevin equation (see appendix C) as a function of ε. The parameters took for this figure are ∆ = 0.25R and
D∆/D0 = 5. Full lines represent the numerical solutions obtained with the PDE solver and dashed lines represent the narrow
escape solutions Eqs. (48) and (49) for the GMFPT and the CMFPT respectively. All three solutions are compatible in the
ε� 1 limit, which validates (i) the 2d algorithm for diffusion in discontinuous media, (ii) the numerical solution of the PDEs
by FreeFem++ and (iii) the validity of the narrow escape limit for the ε� 1 expansion. (b) R(x0|x0)− 1/8π as a function of
D∆/D0 ≥ 1 for several values of δ = ∆/R. Full lines represent the analytical prediction from Eq. (47) and symbols represent
the numerical estimates obtained with fits to the results produced by the PDE solver.

and (51) and the GMFPT to reach the escape region starting on the surface, which satisfies the expression

D∆

R2
t(∂Ω→ ∂Ωε) ' − ln

ε

4
+ 2

∞∑
n=1

(D∆ −D0)(1− δ)2n

n {2D0 + (D∆ −D0) [1− (1− δ)2n]} . (52)

Moreover, the starting point that has the maximum MFPT is not always located at −x0 = (−R, 0) [see Fig. 8]. In
fact, if the diffusivity of the inner shell is much bigger than the one of the outer shell (D∆ > D0), the time spent in
the inner shell can be bigger than the one spent in the outer shell which implies that the MFPT to reach the escape
region - in the outer shell - is maximized in the inner shell. Because of the symmetries of the problem (concentric and
symmetric with respect to the horizontal axis), the maximum must be located on the horizontal axis, since it depends
on the distance to the escape region, and more precisely on the segment between −x0 and 0. We denote the distance
between the starting point and the center of the disk that gives the maximum MFPT (MMFPT) with rmax and with
Dc

∆ > D0 the lower limit of the diffusivity D∆ for which the starting point with the MMFPT is located in the inner
shell. If D∆ < Dc

∆, the MMFPT starting point is located in the outer shell (|x| > R−∆) by definition of Dc
∆. The

value of rmax is then restricted between R and R−∆. Since the MFPT is an increasing function of the distance to
the escape region, when the diffusivity is constant, the MMFPT is then necessarily situated at −x0 and rmax = R
[see Fig. 8c]. If D∆ > Dc

∆, the MMFPT starting point is located in the inner shell (|x| < R − ∆) by definition of
Dc

∆. The value of rmax is then lesser than R−∆. For a diffusivity D∆ & Dc
∆, the MMFPT starting point is located

in the maximum distance to the escape region within the inner shell implying that rmax . R−∆ [see Fig. 8d].
When D∆ � Dc

∆, the MFPT can be decomposed into the sum of the MFPT to reach the inner boundary x = R−∆
and the MFPT to reach the escape region from this last point. The MMFPT starting point is then located at the
center of the disk which implies that rmax = 0 [see Fig. 8f]. Since the MMFPT starting point stays for D∆ > Dc

∆ in
a region of constant diffusivity, rmax decreases continuously from R−∆ to 0.

To summarize, the location of the MMFPT moves discontinuously from the position −x0 (rmax = R) for D∆ < Dc
∆

to a position inside the inner shell (rmax < R−∆) for D∆ > Dc
∆ and approaches continuously the center of the disk

(rmax = 0) in the limit D∆ � Dc
∆. This behaviour is demonstrated in Fig. 10a for ∆ = 0.25R and ε = 0.05. The

limit value of the diffusivity at the discontinuity is equal to Dc
∆ ' 4.5D0. In Fig. 10b, we show the position of the

maximum rmax with respect to the parameters ∆/R and D∆ for the escape angle ε = 0.05. The function Dc
∆(∆) can

be extracted from the discontinuity of the location of the MMFPT and appears to be continuous. The discontinuity
is less pronounced for ∆ � R since the width of the outer shell is small while the discontinuity is more pronounced
for ∆ ' R but occurring for a larger diffusivity - for a geometry close to the disk.
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FIG. 10: (a) Dimensionless distance of the maximal mean first passage time (MMFPT) to the center rmax/R for ∆ = 0.25R
and ε = 0.05. For D∆ < Dc

∆, the MMFPT is located at the point (−R, 0) for which rmax = R. At D∆ = Dc
∆, the position

of the MMFPT migrates discontinuously to the inner shell and moves continuously towards the center of the disk in the limit
D∆ � D0. (b) Dimensionless distance of the MMFPT to the center rmax/R as a function of the width ∆ and the ratio D∆.
The MMFPT is always located at (−R, 0) in the limits D∆ → D0 and ∆ → R corresponding to the disk geometry. This
discontinuity is more pronounced for increasing values of ∆. The Dc

∆ value seems to be a continuous function of ∆.

B. The thin outer shell limit (∆�R)

Next we calculated the GMFPT numerically with FreeFEM++ and show the result in Fig. 11a as a function of the
width ∆ for fixed values of the escape angle ε and for D∆ = 5D0. We compare it with the narrow escape expression
(48) and note that it is valid only for not too small values of ∆ since the analytical solution diverges when ∆ � R
while the numerical solution approaches a constant. This behavior shows that the diffusive motion is enhanced by the
excursions in the thin outer shell (∆� R), which implies a finite GMPFT to reach a small escape region on the outer
boundary. This kind of behavior was already observed for surface-mediated diffusion problems [25] where the leading
order of the narrow escape problem is constant and no more logarithmic divergent with the escape angle ε. This
behavior only happens for D∆ > D0 as shown in Fig. 11b. In fact, for D∆ = D0 the two-shell geometry reduces to
the disk geometry studied in section II presenting the classical logarithmic behavior. And for D∆ < D0, the behavior
is super-logarithmic since the GMFPT diverges much faster than the logarithmic behavior of the D∆ = D0 case: the
Brownian motion in the outer shell is slowed down due to the diffusion constant value, smaller than in the inner shell,
and the MFPT to reach the escape region located in it, is strongly increased.

Moreover, Fig. 12 shows that the GMFPT is a monotonic function of ∆/R and D∆/D0 for a fixed value of ε. The
same observation holds for the CMFPT (the data is not shown here). The GMFPT as a function of ∆ is a strictly
decreasing function if and only if D∆ > D0. When the value of ∆ is increased, the GMFPT is decreased if D∆ > D0

since the area with the biggest diffusivity (the outer shell) increases. Strictly the opposite behavior happens when
D∆ < D0 since the area with the lowest diffusivity increases. The GMFPT as a function of D∆/D0 is a decreasing
function since the MFPT is inversely proportional to the diffusivity. Then, there is no minimum of the MFPT for the
two-shell geometry, i. e. for ∆ 6= 0 and ∆ 6= R.

The limiting case D0 � D∆ is not equivalent to the annulus geometry studied in the section III since the probability
to find a particle in the inner shell is not zero. In fact, the diffusive particle can enter in the inner shell and the
stationary probability (without the hole) to find it in the inner shell is the same as in the outer shell and equal
to 1/|Ω|, at the contrary of the annulus geometry for which the Brownian particle is excluded from the inner shell.
The MFPT starting far from the escape region in the outer shell will then be impacted by this difference: the particle
will have a high probability, equal to (1− δ)2 from ergodicity, to enter in the inner shell which plays the role of a trap
where the particle stays a long time since D0 � D∆. Since the inner boundary does not play the role of a barrier
but just separates two regions with different spreading of particles, the MFPT obtain for the annulus geometry will
be considerably modified and then explain the differences between both solutions.
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FIG. 11: (a) Numerical solution (symbols) of the dimensionless global mean first passage time (GMFPT) D∆〈t〉/R2 as a
function of δ = ∆/R for several values of ε and D∆/D0 = 5. It is compared to the narrow escape solution (straight lines)
satisfying the Eq. (48) valid if and only if ∆ is not too small. In the ∆� R limit, the GMFPT converges through a constant
value. (b) Numerical value (symbols) of the GMFPT for δ = 10−3 plotted with respect to ε for several ratios D∆/D0. For
D∆ > D0, the GMPT has a constant limit for ε→ 0 whereas the narrow escape solution (15) is valid for D∆ = D0. Moreover,
the GMFPT diverges in the limit ε→ 0 for D∆ < D0.

V. DISCUSSION

We have studied the narrow escape problem for two different disk-like geometries with an inner and an outer region,
the latter of width ∆. The annulus geometry for which the Brownian particle is excluded from the center shell and
the two-shell geometry where the particle has two different diffusion constants. The narrow escape problem consists
to look at the asymptotic behavior of the MFPT when the escape region is reduced to a small escape angle ε � 1
when the width ∆ is fixed. Furthermore, we analyzed the behavior of the MFPT in the thin outer shell limit ∆� R
when the size of the escape region ε is fixed.

For the annulus geometry, both limits are compatible such that the expression of the global mean first passage time
(GMFPT) is given at the leading order by

D∆〈t〉
R2

= −2δ ln ε+
π2

3
+O(δ, ε), (53)

for the dimensionless width δ = ∆/R. Whereas the GMFPT is an increasing function of ε, it can be optimized with
respect to the width ∆ of the annulus. The minimum of GMFPT can be explained by the reduction of the exploration
area for Brownian particles starting close to the escape region while the particles starting far from it remain jammed
for a longer time when the obstacle is large.

For the two-shell geometry, both limits are not interchangeable since the GMFPT is equal to 〈t〉 ∝ − ln(ε/4)+C(∆)
in the narrow escape limit with a sub-leading order term that diverges in the thin outer shell limit: C(∆) ∝

∆→0
ln(∆/R),

whereas the limit of the GMFPT is constant only when D∆ > D0. A similar behavior was recently derived [41] for
the MFPT to reach a small target of height ε on a cylinder of radius ∆, exhibiting similar asymptotically logarithmic
features. Moreover, we found that the distance of the starting point with the maximum MFPT jumps discontinuously
from R, corresponding to a point opposite to the escape region, to a value close to R−∆, corresponding to a point
within the inner shell, when the outer diffusion constant D∆ is increased from D0 to a sufficiently high value.

It turns out that the GMFPT is a strictly monotonous function for all three main parameters : ε, ∆/R and D∆/D0.
This is in contrast to the optimizability of the MFPT reported in Refs. [8, 9]. In a model for spatially inhomogeneous
intermittent search that alternates stochastically between ballistic and diffusive motion where ballistic motion is only
radial in the inner shell and multi-directional in the outer shell, it was found that the MFPT for the narrow escape
problem can be minimized for a thin outer shell, provided the outward radial transport in the inner shell is enhanced.
Thus in the model considered in Refs. [8, 9], it is the enforced re-injection of the searcher into the outer shell that is
crucial for the optimization effect. It leads to an increased probability to find the particle in the outer shell, which is
where the target is: the narrow escape region. On the other hand, the optimizability of the MFPT found for surface
mediated diffusion [25] is due to a low desorption and a high absorption probabilities to the surface also enforcing the
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FIG. 12: (a) Numerical solution of the dimensionless global mean first passage time (GMFPT) D0〈t〉/R2 as a function of
δ = ∆/R for several values of D∆/D0 and ε = 0.2. This function is monotonous and strictly decreasing if and only if D∆ > D0.
The same behavior can be seen for the mean first passage time for a particle starting at the center (CMFPT) D0t(0)/R2 (not
shown here). (b) Numerical solution of the dimensionless GMFPT as a function of δ = ∆/R and D∆/D0 for ε = 0.01. This
two-variable function is strictly monotonous with respect to both parameters.

particle to stay on the surface, where again the target is. Analogously, we mention the result of Ref. [42] concerning
the optimization of the MFPT with respect to the range of attractive and repulsive potential on the surface which
creates a competition between bulk and boundary events.

This analysis shows that it would be interesting to introduce for the model considered in this paper a similar
mechanism leading to an increased probability to find the target in the outer shell. A straightforward possibility
would be to make the boundary between the inner and outer shell semi-permeable, allowing only transitions from
the inner to the outer shell, to favor the finding of the target in the outer shell. A less constrained possibility
would be to introduce appropriate asymmetric reflection and transmission probabilities (or energy barriers) for this
boundary. Alternatively, one could consider stochastic resetting into the cortex region when leaving the outer shell [43].
Furthermore, these analytical solutions of the narrow escape problem for a two-shell geometry let suppose that the
spatially inhomogeneous intermittent search [8, 9] in this two-shell geometry could be solvable in the narrow escape
limit using the same method. These extensions of the problem analyzed in the present paper will be considered in a
forthcoming publication.
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Appendix A: Narrow escape expression of the MFPT

In this appendix, we present the derivation of the sub-leading term of the MFPT mainly inspired by the method
of Ward and Keller [44] which was improved by Pillay et al. [19] and Chevalier et al. [20]. The escape region with an
angle ε � 1 is considered as a perturbation on the boundary. The solution far from the hole (outer solution) takes
on the form

t(x) = − |Ω|
πD0

ln(ε/4) + τ(x) +O(ε). (A1)

where τ(x) represents the space-dependent sub-leading term. The multiplicative constant 4 is just taken for conve-
nience. It is of order O(ε0) usually included in the unknown τ function. From Eqs. (2-4), the function τ(x) satisfies
the equations

D0∇2τ(x) = −1, x ∈ Ω (A2)

n · ∇τ(x) = 0, x ∈ ∂Ω. (A3)
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The solution close to the hole (inner solution) is written in terms of the inner variable x̃ = 2(x−x0)/εR, such that
the hole corresponds to the segment (independent of the value of ε) defined by x̃ = 0 and |ỹ| ≤ 1, and the reflecting
boundaries corresponds to the half-lines defined by x̃ = 0 and |ỹ| ≥ 1, considering ε enough small to have a flat
boundary. In these coordinates, one writes t(x) ≡ v(x̃). The equations for v(x̃) are then for ε→ 0

∇2v(x̃) = 0, x̃ ∈ Ω (A4)

v(x̃) = 0, x̃ ∈ ∂Ωε (A5)

n · ∇v(x̃) = 0, x̃ ∈ ∂Ω\∂Ωε. (A6)

These equations can be solved in the elliptic coordinates (µ, ν) defined by x̃ = sinhµ sin ν and ỹ = coshµ cos ν. The
Laplace’s equation writes in this system of coordinates: ∂µµv + ∂ννv = 0. The escape region corresponds to µ = 0
and ν ∈ [0, 2π], implying the boundary condition v(µ = 0, ν) = 0. The reflecting boundary corresponds to ν = 0 and
µ > 0, involving the condition ∂νv(µ, ν = 0) = 0. The ν-independent solution of this system is v(µ, ν) = Aµ. The
outer and the inner solutions are matched in an intermediate region such that x→ x0 and |x̃| → ∞ (i. e. µ→∞ for
elliptic coordinates). The inner solution behaves thus like

v(x̃) ' A ln(2|x̃|) = A ln
4|x− x0|

εR . (A7)

Comparing with the outer solution (A1), this implies the value of A = |Ω|/(πD0) and the origin of the factor 4 is
seen. The behavior of the function τ(x) close to the hole is thus given by

τ(x→ x0) =
|Ω|
πD0

ln
|x− x0|
R . (A8)

Following Ref. [19], the pseudo Green’s function G(x|x0) is introduced via the equations

∇2G(x|x0) =
1

|Ω| − δ(x− x0), x ∈ Ω (A9)

n · ∇G(x|x0) = 0, x ∈ ∂Ω (A10)

G(x→ x0|x0) = − 1

π
ln
|x− x0|
R +R(x0|x0), (A11)∫

Ω

dx G(x|x0) = 0, (A12)

where δ(x) represents the Dirac’s distribution which can be omitted here since x0 belongs to the boundary of the
domain and R(x0|x0) is the (unknown) regular part of the Green’s function at the center of the escape region. The
function τ(x) is then given by the relation obtained from Eqs. (A2-A3) and (A8)

τ(x) = −|Ω|
D0

G(x|x0) + 〈τ〉, (A13)

where the spatial average 〈τ〉 satisfies

〈τ〉 =
|Ω|
D0

R(x0|x0). (A14)

The spatial average of the MFPT is then given by

〈t〉 =
|Ω|
πD0

[
− ln

ε

4
+ πR(x0|x0)

]
, (A15)

reproduced inside the main text via Eq. (11) and the expression of the MFPT t(x) is

t(x) = 〈t〉 − |Ω|
D0

G(x|x0), (A16)

corresponding to the given Eq. (12) in the main text. These both equations depends on the pseudo Green’s function
defined by Eqs. (A9-A12) reproduced in the main text via Eqs. (7-10) where the Dirac distribution is removed.
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Appendix B: Computations of the regular part of the Green’s function R(x|x0)

In this appendix, we will compute the expression of the regular part of the Green’s function R(x|x0), defined by
Eq. (13), for the three different geometries shown in Fig. 1. We will start to a rewriting of Eqs. (7-10) for this regular
part. The Eq. (9) is satisfied by the definition of R(x|x0). Since the function ln |x− x0| is a solution of the Laplace’s
equation, for all planar domains where x 6= x0, the equation (7) becomes

∇2R(x|x0) =
1

|Ω| , x ∈ Ω. (B1)

Moreover, the spatial average of ln(|x − x0|/R) vanishes over the disk - via the integral over the orthoradial part -
the equation (10) gives ∫

Ω

dx R(x|x0) = 0. (B2)

The condition on the boundary of the domain (8) is changed to

n · ∇R(x|x0) = n · ∇ 1

π
ln
|x− x0|
R . (B3)

We use the (dimensionless) polar coordinates (r, θ) defined as r = |x|/R and x · x0/R2 = r cos θ. This definition
allows us to rename the regular part of the Green’s function as R(r, θ) without any loss of generality. Since the normal
vector n is always radial for all studied geometries, the relation for the radial derivative of ln |x − x0| at the point
(r, θ) is then

er · ∇
1

π
ln
|x− x0|
R =

1

2π

2r − 2 cos θ

r2 − 2r cos θ + 1
. (B4)

1. Known solution: the disk geometry

The equation on the boundary of the domain (B3) rewrites

∂R

∂r
(1, θ) =

1

2π
, (B5)

which is θ-independent. We can thus look for a radial solution, given by

R(r, θ) =
r2

4π
− 1

8π
, (B6)

involving the value at the center of the escape region R(x0|x0) ≡ R(1, 0) = 1/8π.

2. The annulus geometry

The equations of the Green’s function for the annulus geometry can be deduced from the Eqs. (20-23) of the
MFPT. Its regular part satisfies then the bulk equation (B1) and the normalization condition (B2). From Eq. (B3),
the boundary conditions respectively on the outer and the inner boundaries become

∂R

∂r
(1, θ) =

1

2π
, (B7)

∂R

∂r
(1− δ, θ) =

1

2π

2(1− cos θ)− 2δ

2(1− δ)(1− cos θ) + δ2
, (B8)

where we used the relation (B4). Since this last equation is θ-dependent, the solution R(r, θ) is not radially symmetric
for this geometry. We thus look for a solution with the global form

R(r, θ) =

∞∑
n=0

fn(r) cos(nθ) (B9)
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due to the periodicity of the polar coordinate θ and the symmetry of the problem under the θ → −θ transformation.
The functions fn(r) should satisfy the equations resulting from the bulk equation (B1)

f ′′n (r) +
1

r
f ′n(r)− n2

r2
fn(r) = 0, n ≥ 1 (B10)

f ′′0 (r) +
1

r
f ′0(r) =

1

|Ω| . (B11)

The global solution is thus given by fn(r) = anr
n + bnr

−n (with n ≥ 1) and f0(r) = r2/(4|Ω|) + a0 + b0 ln r, which
just rewrites as

R(r, θ) =
r2

4|Ω| + a0 + b0 ln r +

∞∑
n=1

[
anr

n + bnr
−n] cos(nθ). (B12)

We will now look at the expression for an and bn coefficients. The first condition we use is given by the equation
(B2). Since the average value of cos(nθ) vanishes for n ≥ 1, the remaining equation is∫ 1

1−δ
dr r

[
r2

4|Ω| + a0 + b0 ln r

]
= 0. (B13)

From the equation (B7), we get the relation

1

2|Ω| + b0 +

∞∑
n=1

(an − bn)n cos(nθ) =
1

2π
, (B14)

which implies immediately from the orthogonality of cos(nθ) that an = bn for n ≥ 1 and

b0 = − (1− δ)2

2πδ(2− δ) . (B15)

This last relation implies the value of a0 from the expression (B13)

a0 =
3

8π
− δ(2− δ) + (1− δ)4 ln(1− δ)

2πδ2(2− δ)2
. (B16)

The boundary condition at r = 1− δ given by Eq. (B8) gives the relation, using the equality an = bn,

1− δ
2|Ω| +

b0
1− δ +

∞∑
n=1

ann
[
(1− δ)n−1 − (1− δ)−n−1

]
cos(nθ) =

1

2π

2(1− cos θ)− 2δ

2(1− δ)(1− cos θ) + δ2
. (B17)

We again use the orthogonality of cos(nθ). For n = 0, we get

1− δ
2|Ω| +

b0
1− δ =

∫ 2π

0

dθ

(2π)2

2(1− cos θ)− 2δ

2(1− δ)(1− cos θ) + δ2
= 0. (B18)

This implies again that the Eq. (B15) is satisfied which ensures that a solution of the system exists. For n 6= 0, we
get the relation

annπ
[
(1− δ)n−1 − (1− δ)−n−1

]
=

∫ 2π

0

dθ

2π

2(1− cos θ)− 2δ

2(1− δ)(1− cos θ) + δ2
cos(nθ) = −(1− δ)n−1, (B19)

which implies the expression of an as

an =
1

nπ [(1− δ)−2n − 1]
. (B20)

After determining all these constants, we get the general expression of the regular part of the Green’s function
R(r, θ)

R(r, θ) =
r2 − 2

4πδ(2− δ) +
3

8π
− (1− δ)4 ln(1− δ)

2πδ2(2− δ)2
− (1− δ)2 ln r

2πδ(2− δ) +
1

π

∞∑
n=1

(rn + r−n)(1− δ)2n

n [1− (1− δ)2n]
cos(nθ). (B21)
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Its value at the center of the escape region x0 - R(x0|x0) ≡ R(1, 0) - is then

R(x0|x0) =
3

8π
− 1

4πδ(2− δ) −
(1− δ)4 ln(1− δ)

2πδ2(2− δ)2
+

2

π

∞∑
n=1

(1− δ)2n

n [1− (1− δ)2n]
, (B22)

which is reproduced in Eq. (24) of the main text.
In the limit δ → 1, the expression (B21) tends to the disk formula (B6)

R(r, θ) '
δ→1

r2

4π
− 1

8π
, (B23)

for a radius which is let constant such that r > 1− δ. Moreover, the derivative of the function on the inner boundary
(B8) transforms as

lim
δ→1

∂R

∂r
(1− δ, θ) = − 1

π
cos θ (B24)

and is not applicable at the origin r = 0, where θ is undefined. In the limit δ → 1, the regular part of the Green’s
function of the annulus geometry tends to the one of the disk geometry except at the origin point. This will not
change the MFPT expression since it is a continuous function all over the domain.

3. The two-shell geometry

The equations of the Green’s function for the two-shell geometry can be deduced from the Eqs. (43-46) of the
MFPT. We define R1(r, θ) and R2(r, θ) the value of its regular part respectively on the inner shell and the outer shell
in the (dimensionless) polar coordinates. The bulk equations verified by Ri(r, θ) are thus

∇2R1(r, θ) =
1

|Ω| , r > 1− δ (B25)

∇2R2(r, θ) =
D∆

D0|Ω|
, r < 1− δ. (B26)

The boundary conditions at r = 1− δ are given by

R1(1− δ, θ) = R2(1− δ, θ), (B27)

D∆
∂R1

∂r
(1− δ, θ)−D0

∂R2

∂r
(1− δ, θ) =

D∆ −D0

2π

2(1− cos θ)− 2δ

2(1− δ)(1− cos θ) + δ2
, (B28)

where we used the relation (B4), and the reflective boundary condition at r = 1 becomes

∂R1

∂r
(1, θ) =

1

2π
. (B29)

Finally, the normalization condition gives the last relation, fixing the additive constant of R∫ 2π

0

dθ

[∫ 1−δ

0

dr rR2(r, θ) +

∫ 1

1−δ
dr rR1(r, θ)

]
= 0. (B30)

The general solutions of the bulk equations (B25) and (B26) can be written as

R1(r, θ) =
r2

4π
+ a0 + b0 ln r +

∞∑
n=1

[
anr

n + bnr
−n] cos(nθ), (B31)

R2(r, θ) =
D∆r

2

4πD0
+ c0 + d0 ln r +

∞∑
n=1

[
cnr

n + dnr
−n] cos(nθ). (B32)

From the non singularity of the problem at r = 0, we should impose dn = 0 for n ≥ 0 to have a non divergent solution
R2(r, θ). The boundary condition at r = 1 given by Eq. (B29) writes

1

2π
+ b0 +

∞∑
n=1

n (an − bn) cos(nθ) =
1

2π
. (B33)
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The orthogonality of cos(nθ) imposes thus b0 = 0 and an = bn for n ≥ 1. The continuity at r = 1− δ, expressed by
the Eq. (B27) becomes

(1− δ)2

4π
+ a0 +

∞∑
n=1

an
[
(1− δ)n + (1− δ)−n

]
cos(nθ) =

D∆(1− δ)2

4πD0
+ c0 +

∞∑
n=1

cn(1− δ)n cos(nθ). (B34)

The orthogonality of cos(nθ) imposes thus

a0 − c0 =
(D∆ −D0)(1− δ)2

4πD0
, (B35)

cn = an
[
1 + (1− δ)−2n

]
. (B36)

From the relation 〈cos(nθ)〉 = 0, the condition (B29) becomes∫ 1−δ

0

dr r

(
D∆r

2

4πD0
+ c0

)
+

∫ 1

1−δ
dr r

(
r2

4π
+ a0

)
= 0, (B37)

which simplifies as

(D∆ −D0)(1− δ)4 +D0

8πD0
− (a0 − c0)(1− δ)2 + a0 = 0. (B38)

This equation gives thus

a0 =
(D∆ −D0)(1− δ)4 −D0

8πD0
, (B39)

c0 =
(D∆ −D0)(1− δ)4 − 2(D∆ −D0)(1− δ)2 −D0

8πD0
. (B40)

Finally, to determine the an and cn coefficients for n ≥ 1, we solve the condition (B28) at r = 1− δ

D∆

∞∑
n=1

ann
[
(1− δ)n−1 − (1− δ)−n−1

]
cos(nθ)−D0

∞∑
n=1

cnn(1− δ)n−1 cos(nθ) =

D∆ −D0

2π

2(1− cos θ)− 2δ

2(1− δ)(1− cos θ) + δ2
.

(B41)

The orthogonality of cos(nθ) imposes thus

annπ(1− δ)n−1
{
D∆

[
1− (1− δ)−2n

]
−D0

[
1 + (1− δ)−2n

]}
=

D∆ −D0

2π

∫ 2π

0

dθ
2(1− cos θ)− 2δ

2(1− δ)(1− cos θ) + δ2
cos(nθ) = −(D∆ −D0)(1− δ)n−1,

(B42)

which implies the expressions of cn and an coefficients

an =
(D∆ −D0)(1− δ)2n

nπ {2D0 + (D∆ −D0) [1− (1− δ)2n]} , (B43)

cn =
(D∆ −D0)

[
(1− δ)2n + 1

]
nπ {2D0 + (D∆ −D0) [1− (1− δ)2n]} . (B44)

We have then determine the general expression of the regular part of the Greens function R(r, θ) with

R1(r, θ) =
r2

4π
− 1

8π
+

(D∆ −D0)(1− δ)4

8πD0
+

1

π

∞∑
n=1

(D∆ −D0)(1− δ)2n (rn + r−n)

n {2D0 + (D∆ −D0) [1− (1− δ)2n]} cos(nθ), (B45)

R2(r, θ) =
D∆r

2

4πD0
− D∆

8πD0
+

(D∆ −D0)δ2(2− δ)2

8πD0
+

1

π

∞∑
n=1

(D∆ −D0)
[
(1− δ)2n + 1

]
rn

n {2D0 + (D∆ −D0) [1− (1− δ)2n]} cos(nθ). (B46)
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Its value at the center of the escape region x0 - R(x0|x0) ≡ R1(1, 0) - is then

R(x0|x0) =
1

8π
+

(D∆ −D0)(1− δ)4

8πD0
+

2

π

∞∑
n=1

(D∆ −D0)(1− δ)2n

n {2D0 + (D∆ −D0) [1− (1− δ)2n]} , (B47)

which is reproduced in Eq. (47) of the main text.
In the limit D∆ → D0, we can remark that the expressions (B45-B46) become

R1(r, θ) ' R2(r, θ) ' r2

4π
− 1

8π
, (B48)

corresponding to the disk formula (B6). Moreover, in the limit δ → 1, the function R1(r, θ) goes also to the disk
formula and the function R2(r, θ), valid only at r = 0, is equal to −1/8π corresponding to the value of the disk
formula at r = 0. Then, in both limit D∆ → D0 and ∆ → R, the regular part of the Greens function tends to
the disk formula (B6), which implies that the MFPT starting at any position x of the domain correctly satisfies the
well-known formula (16).

Appendix C: Simulation of the Langevin equation

In this appendix we consider the one-dimensional problem on the unit segment x ∈ [0, 1], corresponding to the two-
shell geometry with a fully absorbing external boundary (ε = 2π), where x plays the role of the radial component |x|/R.
The extremity at x = 0 is reflecting whereas the one at x = 1 is absorbing. The diffusivity of the particle is denoted
as D0 for x < 1−δ and D∆ for x > 1−δ. The one dimensional MFPT for a Brownian particle starting at the position
x < 1− δ (respectively at x > 1− δ) is denoted as t1(x) (respectively t2(x)). The equations in the bulk are then [6]

D0t
′′
1(x) = −1, x < 1− δ, (C1)

D∆t
′′
2(x) = −1, x > 1− δ. (C2)

The boundary conditions are t′1(0) = 0 and t2(1) = 0, and the matching conditions at x = 1−δ are t1(1−δ) = t2(1−δ)
and D0t

′
1(1−δ) = D∆t

′
2(1−δ) corresponding respectively to the continuity of the concentration and the flux of diffusive

particles across the boundary. The general solution is

t1(x) =
1− x2

2D0
− (D∆ −D0)δ(2− δ)

2D0D∆
, (C3)

t2(x) =
1− x2

2D∆
. (C4)

The CMFPT expression is given here by

t1(0) =
1

2D0
− (D∆ −D0)δ(2− δ)

2D0D∆
, (C5)

and the GMFPT is then

〈t〉 =
D0δ[3(1− δ) + δ2] +D∆(1− δ)3

3D0D∆
. (C6)

We want now to compare these exact one-dimensional solutions to the numerical simulations’ ones. We recall here
that the general one dimensional Fokker-Planck equation for a diffusive particle with a inhomogeneous diffusivity
D(x) writes

∂p

∂t
(x, t) =

∂

∂x

[
D(x)

∂p

∂x
(x, t)

]
= −∂J

∂x
(x, t), (C7)

with a current J(x, t) satisfying the Fick’s semi-empirical law. The Langevin equation written with the Itō convention,
corresponding to a full explicit discretization, is

xt+dt − xt = D′(xt)dt+
√

2D(xt)dBt (C8)
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FIG. 13: Numerical solution of the dimensionless global mean first passage time (GMFPT) and mean first passage for a particle
starting at x = 0 (CMFPT) plotted respectively with circles and squares as a function of δ for D∆/D0 = 5. This numerical
solution is obtained from the one dimensional numerical simulation whose algorithm is explain in the appendix C. The analytical
expressions for the CMFPT and the GMFPT given respectively by Eq. (C5) and Eq. (C6) are plotted with straight lines. The
algorithm for discontinuous media shown by [34, 35] is thus accurate for the one-dimensional problem.

where dBt represents the Wiener process at time t with a variance dt. The convective term of the Itō formalism is
then given by D′(x). For our two-shell geometry, with piecewise constant diffusivities, this convective term is thus
proportional to the Dirac’s distribution.

To get a realizable numerical simulation for this problem, we follow the algorithm shown by [34, 35], satisfying the
flux continuity on the inner boundary. When the diffusive particle is exactly at x = 1 − δ, the probability to go to
the left (through a region of diffusivity D0) is

pleft =

√
D0√

D0 +
√
D∆

(C9)

whereas the probability to go to the right (through a region of diffusivity D∆) is

pright =

√
D∆√

D0 +
√
D∆

. (C10)

If D0 = D∆, we get back to a random walker with pleft = pright = 1/2 equivalent to a diffusive motion with a constant
diffusivity. In figure 13, we show that this algorithm is compatible with exact expressions of CMFPT and GMFPT
given respectively by Eqs. (C5) and (C6) which justify the use of this algorithm for the 2d problem and the numerical
data shown in Fig. 9.

Remarkably, we can mention that the fully implicit discretization (isothermal convention) writes [36]

xt+dt − xt =
√

2D(xt+dt)dBt (C11)

instead of Eq. (C8), with a zero convective term but difficult to integrate numerically.
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